Программный модуль реализации полиномиальной регрессии с оценкой степени полинома
Алгоритм построения полиномиальной функции регрессии с оценкой степени полинома по заданному набору точек. Разработка программы, моделирующей выборку случайных пар чисел и выявление стохастической зависимости между ними при помощи уравнения регрессии.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.02.2014 |
Размер файла | 114,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Программный модуль реализации полиномиальной регрессии с оценкой степени полинома
1. Выполнение работы.
1.1 Математическая модель
Расчёт коэффициентов регрессии
Пусть регрессионная модель - полином заданной степени
Зависимая переменная (аргумент) x=(x0, x1, x2… xp)
Согласно методу наименьших квадратов, искомый вектор коэффициентов w=(w0, w1, w2… wp) есть решение нормального уравнения
(1)
Где y - вектор, состоящий из значений зависимой переменной, y=(y0, y1, y2… ym)
Матрица в случае полиномиальной регрессии называется матрицей Вандермонда и принимает вид
1. Уточнение степени полинома
Критерием для выбора регрессионной зависимости является критерий Фишера. В котором в качестве отношения берутся отношения дисперсий полинома степени р и р+1 порядка.
дисперсия полинома степени p
(2)
Если по критерию Фишера гипотеза о незначимом различии дисперсий с заданным уровнем значимости принимается, то в качестве регрессионной зависимости может быть выбрать полином порядка p. Недостаток данного метода уточнения степени полинома состоит в том, что увеличивая степень полинома на 1, вновь приходится рассчитывать все коэффициенты
2. Разработка программы
Входные данные:
N - количество случайных значений зависимой переменной yi
K - количество зависимых переменных (аргументов) xi
Sigma - дисперсия для генерации случайных значений
P - Уровень значимости для вычисления критического значения критерия Фишера
Выходные данные:
Выбранная степень полинома
Коэффициенты полиномиальной регрессии.
Ход работы программы
Генерация К - значений аргументов Х.
Генерация случайных значений зависимой переменной, как нормальное распределение при заданном математическом ожидании Sin(Х) и дисперсии sigma, выборка среднего, т.е. получения вектора Y.
Создание матрицы А - Вандермонда для максимальной степени 20, и К значений Х.
Последовательное решение нормального уравнения (1) для заданных степеней полинома (1..20) - расчёт коэффициентов, проверка условия (2), выбор степени полинома.
Вывод результатов
3. Интерфейс программы
Внешний вид окна программы приведен на рисунке (1).
Рисунок 1
Рисунок 2
В левой части программы вводятся исходные данные.
После ввода данных нажмите кнопку «Generate», затем «Сalculate»
В правой части программы отобразятся сгенерированные точки и график рассчитанной функции регрессии, а так же в окне информации (рисунок 2) отобразятся полученные коэффициенты и выбранная степень полинома.
Реализована возможность смены уровня значимости и пересчёт для созданной генерации, для этого выберете желаемый уровень значимости и нажмите кнопку «Calculate».
полиномиальный регрессия программа стохастический
Выводы
Разработанная программа позволяет проследить выбор степени полиномиальной регрессии, а так же представление, в виде графика, функции полиномиальной регрессии.
Основной проблемой при вычислениях является ухудшение обусловленности для расчета коэффициентов при увеличении степени полинома.
Размещено на Allbest.ru
Подобные документы
Расчет уравнения линейной регрессии. Построение на экран графика и доверительной области уравнения. Разработка программы, генерирующей значения случайных величин, имеющих нормальный закон распределения для определения параметров уравнения регрессии.
лабораторная работа [18,4 K], добавлен 19.02.2014Основные параметры уравнения регрессии, оценка их параметров и значимость. Интервальная оценка для коэффициента корреляции. Анализ точности определения оценок коэффициентов регрессии. Показатели качества уравнения регрессии, прогнозирование данных.
контрольная работа [222,5 K], добавлен 08.05.2014Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.
контрольная работа [63,3 K], добавлен 19.04.2013Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.
контрольная работа [261,1 K], добавлен 23.03.2010Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.
контрольная работа [226,6 K], добавлен 11.08.2015Уравнение нелинейной регрессии и вид уравнения множественной регрессии. Преобразованная величина признака-фактора. Преобразование уравнения в линейную форму. Определение индекса корреляции и числа степеней свободы для факторной суммы квадратов.
контрольная работа [501,2 K], добавлен 27.06.2011Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.
лабораторная работа [100,5 K], добавлен 02.06.2014Проведение регрессионного анализа опытных данных в среде Excel. Построение графиков полиномиальной зависимости и обобщенной функции желательности Харрингтона. Определение дисперсии коэффициентов регрессии. Оценка частных откликов по шкале желательности.
контрольная работа [375,6 K], добавлен 21.01.2014