Доказательство утверждения, частным случаем которого является великая теорема Ферма
Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.
Рубрика | Математика |
Вид | творческая работа |
Язык | русский |
Дата добавления | 08.08.2010 |
Размер файла | 856,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2. 1-я часть «Утверждения 2» (для Условий 1(начало), 2 (начало) и 3) доказана.
*********
Часть вторая (Утверждения 2)
Случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.
Доказательство
Казалось бы, мы должны рассмотреть еще моменты в Условиях 1 и 2, когда перед скобками в (12), …, (15) стоят разные знаки (как при доказательстве «Утверждения 1» в части 2). Интуиция подсказывает, что эта процедура опять нас приведет к известным значениям b и c: либо (из ), либо (из ), либо b и c - четные чего не должно быть, (подобно доказательству части 2 «Утверждения 1»).
Для подтверждения сказанного рассмотрим подробно только часть Условия 1.
Условие 1 (продолжение).
Случай 1.
(12)
(13?)
(14)
(15) ,
которые также являются решениями уравнения (11)
.
Тогда сумма имеет вид:
Учитывая (10) и (15), можно получить разность :
=> .
Выразим из (17) и (16) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (4) c2 + b2 = 2 в, то => .
Из (15) с учетом (20) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (24), полностью совпадают с (6) и (7), т.е. с уравнениями
Теперь, с учетом (13?) и (14), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем).
Теперь, учитывая (23), получим значение для b2:
, т.к. из (20) получается
(20?).
Итак, (28), что для целых чисел неприемлемо.
Этот случай нас не интересует.
********
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26), получим
=> .
Теперь, с учетом (29), можно получить окончательное выражение для с 2 (из (25)):
, т.е. .
Таким образом, уравнение (11), решениями которого являются (12), (13?) , (14), (15), в конечном счете имеет следующие решения:
, ,
(28), ,
где - взаимно простые нечетные целые числа.
*******
Случай 2
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?) , (14), (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30), (28), (29) и (24), т.е.
(30ґ), => c = (30ґ), (29ґ)
(28ґ), => b = 1 (28ґ), (24ґ), где
- взаимно простые нечетные целые числа.
Случай 3
(12)
(13?)
(14)
(15?) ,
которые также являются решениями уравнения
(11).
Тогда сумма имеет вид:
Учитывая (10) и (15), можно получить разность :
- => .
Выразим из (31) и (16) :
=> (32)
=> (33).
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(34), (35), а их сумма .
Т.к. из (4) c2 + b2 = 2 в, то и .
Из (15ґ) с учетом (20) выразим :
, т.е. (24ґ).
Т.о., , ,
где, т.е.
,
,
выражения которых, с учетом (24ґ), полностью совпадают с (6) и (7), т. е. с уравнениями
Теперь, с учетом (13?) и (14), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)
Теперь, учитывая (23), получим значение для b2:
,т.к. из (20) получается
.
Итак, (28), что для целых чисел неприемлемо.
Этот случай нас не интересует.
*******
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26ґ), получим => (29ґґ).
Теперь, с учетом (29ґґ), можно получить окончательное выражение для с 2 (из (25ґ)):
, т.е. (30ґґ).
Таким образом, уравнение (11), решениями которого являются (12), (13?), (14) и (15ґ), в конечном счете имеет следующие решения:
(30ґґ), ,
(28), (24ґ),
где - взаимно простые нечетные целые числа.
***********
Случай 4
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?), (14) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30ґґ), (28), (29ґґ) и (24ґ), т.е.
(30ґґґ), => (30ґґґ), (29ґґґ), (28ґ), => b = (28ґ), (24),
где - взаимно простые нечетные целые числа.
*******
Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).
Обозначим снова следующие выражения буквами С, В, N, К:
= С
= В
= N
= К.
Тогда эти первые 4 случая следующие:
1. (12) 2. (12ґ) (30ґ)
(13ґ) (28) (13) (28ґ)
(14) (29) (14ґ) (29ґ)
(15) (24) (15ґ) (24ґ)
3. (12) (30ґґ) 4. (12ґ) (30ґґґ)
(13ґ) (28) (13) (28ґ)
(14) (29ґґ) (14ґ) (29ґґґ)
(15ґ) (24ґ) (15) (24).
Рассмотрим еще 4 случая.
5. с2 = С 6. с2 = - С 7. c2 = C 8. c2 = -C
b2 = - B b2 = B b2 = - B b2 = B
= - N = N = - N = N
*******
Итак, рассмотрим случай 5.
Случай 5.
(12),
(13ґ),
(14ґ),
(15) , которые также являются решениями уравнения
(11)
Но данный случай аналогичен случаю 5 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):
(41), , где - взаимно простые нечетные целые (40), (38ґ), числа.
Следовательно, в данном рассматриваемом Случае 5 у уравнения (11) следующие решения:
(32) => b (32), (24)
(31) => с = (31), (29ґ) ,
где взаимно простые целые нечетные числа.
*******
Случай 6
Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32), (31), (29ґ) и (24), т.е.
(31ґ), (29),
(32ґ), (24ґ), где - взаимно простые целые нечетные числа.
Но этот случай нас не интересует, т.к. с не является целым числом.
*******
Случай 7
(12),
(13ґ),
(14ґ),
(15ґ), которые также являются решениями уравнения
(11).
Но данный случай аналогичен случаю 7 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):
(40), (38ґґґ),
(41ґґ), (33ґ),
где - взаимно простые нечетные целые числа.
Следовательно, в данном рассматриваемом случае 7 у уравнения (11) следующие решения:
(31) => с = (31), (29ґґґ) ,
(32ґ) => b (32ґґ), (24ґ),
где - взаимно простые целые нечетные числа.
*******
Случай 8
Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32ґґ), (31), (29ґґґ) и (24ґ), т.е.
(31ґ), (29ґґ),
, (24), где - взаимно простые целые нечетные числа.
Но этот случай нас не интересует, т.к. с не является целым числом.
********
Вывод
Итак, после анализа полученных решений в Случаях 1, …,8, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решения в следующих целых числах:
а) ; b ; ; ;
б) ; ; ; .
********
Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 2 и его результат, полностью совпадают с исследованием решений уравнения (15) (в аналогичных случаях при доказательстве Утверждения 1) и с его результатом.
Действительно, вот, например, результаты исследований уравнения (15) в первых 4-х случаях Условия 1(Утверждение 1, Часть 2):
1. (16) 2. (16ґ) (39ґ)
(17ґ) (37) (17) (37ґ)
(18) (18ґ) (38ґ)
(19) (33) (19ґ) (33ґ)
3. (16) (39ґґ) 4. (16ґ) (39ґґґ)
(17ґ) (37) (17) (37ґ)
(18) (38ґґ) (18ґ) (38ґґґ)
(19ґ) (33ґ) (19) (33).
А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2,Часть 2):
1. (12) 2. (12ґ) (30ґ)
(13ґ) (28) (13) (28ґ)
(14) (29) (14ґ) (29ґ)
(15) (24) (15ґ) (24ґ)
3. (12) (30ґґ) 4. (12ґ) (30ґґґ)
(13ґ) (28) (13) (28ґ)
(14) (29ґґ) (14ґ) (29ґґґ)
(15ґ) (24ґ) (15) (24).
Наблюдается полное совпадение результатов (здесь подразумевается, что решения уравнения (15) c и b в верхних 4-х случаях соответствуют решениям уравнения (11)
с2 и b2 в нижних 4-х случаях). То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.
********
Поэтому нетрудно понять, что остальные результаты исследований случаев с 9-го по 28-й в данном доказательстве Утверждения 2 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждения 1) тоже совпадут и никаких новых решений нам не дадут, кроме как:
либо , либо , либо c и b не являются целыми числами, либо c и b - четные числа, чего не должно быть.
********
Из этого набора решений уравнения (11) нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - четное натуральное число, т.е. либо , либо .
*******
Но в теории чисел хорошо известно (Постников М.М. Введение в теорию алгебраических чисел. - М .- Наука. - 1982. - С. 13), что для четных степеней уравнения (где , q=2 q) - показатели четные при ? 0 и q ? 0 - натуральных, в уравнении целочисленные его решения (если они существуют) должны удовлетворять неравенствам:
|| > 2, | | > 2, | c| > 2 => |a| > 1, | b | > 1, |c| > 1,
т.е. в уравнении a2+ b4 = c4 b и c => в уравнении (1) при - четном числе b и c,
т.е. случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.
********
Вывод: 2-я часть «Утверждения 2» доказана.
*******
В результате исследования уравнения (1) мы имеем:
Вывод:
1. Уравнение (1) , где ?2 - четное не имеет решений в попарно простых целых числах a, b, и c таких, чтобы - было четным, и - нечетными целыми числами.
2. «Утверждение 2» нами полностью доказано.
*******
Примечание
1. Понятно, что приведенное доказательство «Утверждения 2» для q = 4 = 2m, где m = 2, распространяется и на показатель степени q=2m при m>2 - натуральном.
2. Если уравнение al+ b4 = c4, где ?2 - четное, неразрешимо в попарно простых целых числах a, b, и c, то и уравнение a4+ b4 = c4 не только неразрешимо в этих же числах, но и вообще неразрешимо ни в каких других целых числах (не являющихся попарно взаимно простыми целыми числами).
Вывод : Великая теорема Ферма для показателя l= q= 4 доказана.
3. Результат доказательства, а именно четность чисел a, b, c в уравнении al+ b4 = c4 (?2 - четное), а, следовательно, в уравнении a4+ b4 = c4 дает возможность в этом уравнении применить метод бесконечного спуска, о чем в свое время не только упоминалось самим Ферма, но и им использовалось.
На основании Выводов о Великой теореме Ферма (стр.34, стр.49) получаем окончательный вывод.
Окончательный «Вывод»: Великая теорема Ферма доказана.
********
Утверждение 3
Часть 1
Уравнение ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Часть 2
Возможны случаи: либо b = ± 1, либо c = ± 1.
*********
Часть первая (Утверждения 3)
Уравнение ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Доказательство
Первая часть доказательства «Утверждения 3» аналогична «Части первой» доказательства «Утверждения 2».
Итак, имеем уравнение (1), где ? 3 - нечетное натуральное, числа a, b, c (если, конечно, они существуют) - попарно взаимно простые целые числа (это наше допущение - вопреки «Утверждению 3»), среди которых только одно четное число a.
Из уравнения (1) следует:
=> (2).
Пусть (3), где и в - целые числа, отличные от нуля и c2 + b2 = 2 в (4), где в - нечетное число при с и b - нечетных.
******
Примечание
То, что в в уравнении (4) нечетное число, хорошо известный факт в теории чисел, который мы ранее уже учитывали («Примечание», стр. 35).
Представим нечетные числа b и c в виде:
b = 2n1 + 1; c = 2n2 + 1, где n1 и n2 - произвольные целые числа. Тогда
b2 + c2 = (2n1 + 1)2 + (2n2 + 1)2 = 2 [2 (n12+n22+n1+n2) + 1],
где в квадратных скобках нечетное число, что и требовалось доказать
*******
Тогда из уравнения (2) следует (с учетом (3) и (4)):
= , где c2 + b2 ? 0, т.к. c ? 0, b ? 0, т.е.
(5),
где k - целое число, отличное от нуля, т.к. c и b взаимно простые целые числа.
Из соотношений (4) и (5) определяем b2 и c2:
=> =>
Откуда в = b2 + 2l-2k (8) - нечетное число (из (4)) при b - нечетном и 2l-2k - четном, т.к. ? 3 - нечетное натуральное число.
Вывод:
1. Из соотношения (4) имеем:
(9) - нечетное число.
2. Из соотношения (5) имеем:
(10) пропорционально 2 (явно), т.е. - четное число.
Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.
*******
Теперь попробуем выразить сумму четвертых степеней чисел c и . Учитывая соотношения (6) и (7), получим:
,
т.е. (11),
где - целые числа, которые, в свою очередь, как мы знаем из предыдущего доказательства «Утверждения 1» (для ), могут быть выражены через другие целые числа следующим образом:
(12) - нечетное число при - нечетном;
(13) - нечетное число при - нечетном;
(14) - нечетное число при - нечетном;
(15) - четное число.
Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать t =0 и r=0 (при t =0 и - четные из (12) и (13), при r=0 = 0 (из (15)) => а = 0 (из (3)), что противоречит нашему допущению).
Для простоты опять (как в утверждениях 1 и 2) обозначим правые части уравнений (12), …, (15) буквами С, В, N, К, т.е.
= С
= В
= N
= К ,
и рассмотрим случай, когда в правых частях уравнений (12), …, (15) перед С, В, N, К, стоят «плюсы» и выполняется Условие1.
Условие1 (начало).
с2 = С
b2 = B
= N
Случай «+».
(12+) - нечетное число при - нечетном;
(13+) - нечетное число при - нечетном;
(14+) - нечетное число при - нечетном;
(15+) - четное число.
Казалось бы, все нормально: четность чисел в (12+), …, (15+) совпадают при -нечетном с нашими предыдущими рассуждениями.
Однако не все так просто.
Помимо всего прочего, у нас есть еще две дополнительные информации (9) и (10) (о четности, заключенной в «Выводе» (стр.36)), вытекающие из предположения о том, что, вопреки условию «Утверждения 2», допустим, существуют попарно взаимно простые целые числа .
Попробуем найти сумму , воспользовавшись их выражениями (12+) и (13+):
,
т.е. => () пропорционально 4, откуда следует, учитывая (9) в «Выводе» (стр.36),
!
Т.е., вопреки «Выводу», является не нечетным, а четным числом, что возможно (из (14)) при -четном.
Однако, если - четное, то (в (12+) и (13+)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, это уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах, где - нечетное натуральное число.
********
Мы рассмотрели случай, когда перед скобками в (12+), …, (15+) стояли «плюсы».
Случай, когда перед теми же скобками стоят «минусы» (Случай «-»), аналогичен вышерассмотренному. Вывод тот же. (Смотри Случай «-» на стр.8.)
*********
Примечание
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 3.
********
Т.к. уравнение (11) симметрично для с2 и b2, (для уравнения 11 они равнозначны), то с2 и b2 могут меняться своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало).
с2 = В
b2 = С
= N
«Новые» случаи «+» и «-».
(12ґ±) c2 =± В
(13ґ±) b2=±С
(14±) =± N
(15±) =±К.
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.36)), !
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (14±)) при -четном.
Однако, если - четное, то (в ((12ґ±) и ((13ґ±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).
Но об этом во 2-ой части данного Утверждения 3.
********
Уравнение (11) симметрично и для и для (для уравнения (11) они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых и меняются своими выражениями (N и К)).
Условие 3.
с2 = С
b2 = B
= К
«Похожие» случаи «+» и «-».
(12±) c2 = ± () = ± С
(13±) b2 = ± () = ± В
(14ґ±) = = ±К
(15ґ±) = ± N.
Согласно одному из Выводов (формула (10) пропорционально 2 (явно), при . Но это возможно, глядя на четное (15ґ±) = ±N= ±() только при t-четном, при которых в (12±) и (13±) c и b - четные, чего не должно быть.
Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоят всевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение (стр.10), подобное для проведено при доказательстве Утверждения 1), мы придем к прежнему результату: c и b - четные, чего не должно быть.
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Вывод
1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 уравнение (1) (1), где ? 3 - нечетное натуральное число, не имеет решений в целых попарно взаимно простых отличных от нуля числах.
2. 1-я часть «Утверждения3» (для Условий 1 (начало), 2 (начало) и 3) доказана.
*********
Часть вторая (Утверждения3)
Возможны случаи: либо , либо .
(Об «Исключении» из общего правила)
Доказательство
Казалось бы, мы должны рассмотреть еще моменты в Условиях 1 и 2, когда перед скобками в (12), …, (15) стоят разные знаки (как при доказательстве «Утверждения 2» в части 2). Интуиция подсказывает, что эта процедура опять нас приведет к известным значениям b и c: либо (из ), либо (из ), либо b и c - четные, чего не должно быть, либо b и c не являются целыми числами (подобно доказательству части 2 «Утверждения 2»).
Для подтверждения сказанного рассмотрим подробно только часть Условия 1.
Итак, осталось рассмотреть случаи, когда перед скобками стоят разные знаки.
Случай 1.
(12)
(13?)
(14)
(15) , которые также являются решениями уравнения
(11) .
Тогда сумма имеет вид:
Учитывая (10) и (15), можно получить разность :
=> .
Выразим из (17) и (16) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (4) c2 + b2 = 2 в, то => .
Из (15) с учетом (20) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (24), полностью совпадают с (6) и (7), т.е. с уравнениями
Теперь, с учетом (13?) и (14), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)
Теперь, учитывая (23), получим значение для b2:
, т.к. из (20) получается
(20?).
Итак, (28), что для целых чисел неприемлемо.
Этот случай нас не интересует.
********
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26), получим => .
Теперь, с учетом (29), можно получить окончательное выражение для с 2 (из (25)):
, т.е. .
Таким образом, уравнение (11), решениями которого являются (12), (13?) , (14), (15), в конечном счете имеет следующие решения:
, ,
(28), ,
где - взаимно простые нечетные целые числа.
*******
Случай 2
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?) , (14), (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30), (28), (29) и (24), т.е.
(30ґ), => c = (30ґ), (29ґ)
(28ґ), => b = 1 (28ґ), (24ґ), где
- взаимно простые нечетные целые числа.
**********
Случай 3.
(12)
(13?)
(14)
(15?) , которые также являются решениями уравнения
(11).
Тогда сумма имеет вид:
Учитывая (10) и (15), можно получить разность :
- => .
Выразим из (31) и (16) :
=> (32)
=> (33)
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(34), (35), а их сумма .
Т.к. из (4) c2 + b2 = 2 в, то и .
Из (15ґ) с учетом (20) выразим :
, т.е. (24ґ).
Т.о. , , где, т.е.
,
,
выражения которых, с учетом (24ґ), полностью совпадают с (6) и (7), т. е. с уравнениями
Теперь, с учетом (13?) и (14), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)
Теперь, учитывая (23), получим значение для b2:
,т.к. из (20) получается
.
Итак, (28), что для целых чисел неприемлемо. Этот случай нас не интересует.
*******
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26ґ), получим => (29ґґ).
Теперь, с учетом (29ґґ), можно получить окончательное выражение для с 2 (из (25ґ)):
, т.е. (30ґґ).
Таким образом, уравнение (11), решениями которого являются (12), (13?), (14) и (15ґ), в конечном счете имеет следующие решения:
(30ґґ), ,
(28), (24ґ),
где - взаимно простые нечетные целые числа.
***********
Случай 4
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?), (14) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30ґґ), (28), (29ґґ) и (24ґ), т.е.
(30ґґґ), => (30ґґґ), (29ґґґ), (28ґ), => b = (28ґ), (24), где
- взаимно простые нечетные целые числа.
*******
Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).
Обозначим снова следующие выражения буквами С, В, N, К:
= С
= В
= N
= К
Тогда эти первые 4 случая следующие:
1. (12) 2. (12ґ) (30ґ)
(13ґ) (28) (13) (28ґ)
(14) (29) (14ґ) (29ґ)
(15) (24) (15ґ) (24ґ)
3. (12) (30ґґ) 4. (12ґ) (30ґґґ)
(13ґ) (28) (13) (28ґ)
(14) (29ґґ) (14ґ) (29ґґґ)
(15ґ) (24ґ) (15) (24).
Рассмотрим еще 4 случая.
5. с2 = С 6. с2 = - С 7. c2 = C 8. c2 = -C
b2 = - B b2 = B b2 = - B b2 = B
= - N = N = - N = N
*******
Итак, рассмотрим случай 5.
Случай 5.
(12),
(13ґ),
(14ґ),
(15) , которые также являются решениями уравнения
(11).
Но данный случай аналогичен случаю 5 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):
(41), , где - взаимно простые нечетные целые (40), (38ґ), числа.
Следовательно, в данном рассматриваемом случае 5 у уравнения (11) следующие решения:
(32) => b (32), (24)
(31) => с = (31), (29ґ) ,
где - взаимно простые целые нечетные числа.
*******
Случай 6
Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32), (31), (29ґ) и (24), т.е.
(31ґ), (29),
(32ґ), (24ґ),
где - взаимно простые целые нечетные числа.
Но этот случай нас не интересует, т.к. с не является целым числом.
*******
Случай 7.
(12),
(13ґ),
(14ґ),
(15ґ), которые также являются решениями уравнения
(11).
Но данный случай аналогичен случаю 7 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):
(40), (38ґґґ),
(41ґґ), (33ґ),
где - взаимно простые нечетные целые числа.
Следовательно, в данном рассматриваемом случае 7 у уравнения (11) следующие решения:
(31) => с = (31), (29ґґґ) ,
(32ґґ) => b (32ґґ), (24ґ), где -
взаимно простые целые нечетные числа.
*********
Случай 8
Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32ґґ), (31), (29ґґґ) и (24ґ), т.е.
(31ґ), (29ґґ),
, (24),
где - взаимно простые целые нечетные числа.
Но этот случай нас не интересует, т.к. с не является целым числом.
Таким образом, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решение (после анализа всех полученных решений) в следующих целых числах:
а) ; b ; ; ;
б) ; ; ; .
**********
Вывод
Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решения в следующих целых числах:
а) ; b ; ; ;
б) ; ; ; .
********
Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 3 и его результат полностью совпадают с исследованием решений уравнения (11) (в аналогичных случаях при доказательстве Утверждения 2) и с его результатом.
Действительно, вот, например, результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2, Часть 2):
1. (12) 2. (12ґ) (30ґ)
(13ґ) (28) (13) (28ґ)
(14) (29) (14ґ) (29ґ)
(15) (24) (15ґ) (24ґ)
3. (12) (30ґґ) 4. (12ґ) (30ґґґ)
(13ґ) (28) (13) (28ґ)
(14) (29ґґ) (14ґ) (29ґґґ)
(15ґ) (24ґ) (15) (24).
А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 3, Часть 2):
1. (12) 2. (12ґ) (30ґ)
(13ґ) (28) (13) (28ґ)
(14) (29) (14ґ) (29ґ)
(15) (24) (15ґ) (24ґ)
3. (12) (30ґґ) 4. (12ґ) (30ґґґ)
(13ґ) (28) (13) (28ґ)
(14) (29ґґ) (14ґ) (29ґґґ)
(15ґ) (24ґ) (15) (24).
Наблюдается полное совпадение результатов. То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.
*********
Нетрудно понять, что остальные случаи с 9-го по 28-й в данном доказательстве Утверждения 3 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждений 1 и 2) никаких новых решений нам не дадут, кроме как:
либо , либо , либо c и b не являются целыми числами, либо c и b - четные числа , чего не должно быть.
********
Из этого набора решений уравнения (11), нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - нечетное натуральное число, т.е. либо , либо , которые таковыми и являются.
*******
Вывод: 2-я часть «Утверждения 3» доказана.
В результате исследования уравнения (1), мы имеем:
Вывод:
1. Уравнение (1) ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Возможны случаи: либо , либо .
2. «Утверждение 3» нами полностью доказано.
*******
Примечание
Понятно, что приведенное сокращенное доказательство «Утверждения 3» (со ссылкой на предыдущее доказательство Утверждения 2), где рассматривается уравнение al+ b4 = c4 при ? 3 - нечетном натуральном и q = 4 = 2 m , где m = 2, распространяется и на показатель степени q = 2 m , где m > 2 - натуральном.
**********
На основании доказательства справедливости «Утверждения 1», «Утверждения 2» и «Утверждения 3» вытекает и справедливость «Общего утверждения».
ОБЩИЙ ВЫВОД
1. Уравнение (, - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .
Таким образом, «Общее утверждение» доказано.
ЛИТЕРАТУРА:
1. Алексеев С.Ф. Два обобщения классических формул // Квант. - 1988. - №10. - С. 23.
2.Постников М.М. Введение в теорию алгебраических чисел. - М., Наука. - 1982 - С. 13.
Май 2009 г., Скворцов А.П.
Уважаемые любители математики и специалисты!
Если не трудно, попробуйте разобраться с данной работой и по возможности ее оценить.
Если в ней есть что-то стоящее, интересное, то очень хотелось бы получить отзыв о данной работе.
Подобные документы
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат [29,1 K], добавлен 19.11.2010Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.
реферат [13,2 K], добавлен 01.12.2010Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа [351,4 K], добавлен 26.05.2012