Доказательство утверждения, частным случаем которого является великая теорема Ферма

Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.

Рубрика Математика
Вид творческая работа
Язык русский
Дата добавления 08.08.2010
Размер файла 856,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. 1-я часть «Утверждения 2» (для Условий 1(начало), 2 (начало) и 3) доказана.

*********

Часть вторая (Утверждения 2)

Случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.

Доказательство

Казалось бы, мы должны рассмотреть еще моменты в Условиях 1 и 2, когда перед скобками в (12),, (15) стоят разные знаки (как при доказательстве «Утверждения 1» в части 2). Интуиция подсказывает, что эта процедура опять нас приведет к известным значениям b и c: либо (из ), либо (из ), либо b и c - четные чего не должно быть, (подобно доказательству части 2 «Утверждения 1»).

Для подтверждения сказанного рассмотрим подробно только часть Условия 1.

Условие 1 (продолжение).

Случай 1.

(12)

(13?)

(14)

(15) ,

которые также являются решениями уравнения (11)

.

Тогда сумма имеет вид:

Учитывая (10) и (15), можно получить разность :

=> .

Выразим из (17) и (16) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

, , а их сумма .

Т.к. из (4) c2 + b2 = 2 в, то => .

Из (15) с учетом (20) выразим :

, т.е. .

Т.о., , , т.е.

,

выражения которых, с учетом (24), полностью совпадают с (6) и (7), т.е. с уравнениями

Теперь, с учетом (13?) и (14), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем).

Теперь, учитывая (23), получим значение для b2:

, т.к. из (20) получается

(20?).

Итак, (28), что для целых чисел неприемлемо.

Этот случай нас не интересует.

********

Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.

Учитывая (26), получим

=> .

Теперь, с учетом (29), можно получить окончательное выражение для с 2 (из (25)):

, т.е. .

Таким образом, уравнение (11), решениями которого являются (12), (13?) , (14), (15), в конечном счете имеет следующие решения:

, ,

(28), ,

где - взаимно простые нечетные целые числа.

*******

Случай 2

Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?) , (14), (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30), (28), (29) и (24), т.е.

(30ґ), => c = (30ґ), (29ґ)

(28ґ), => b = 1 (28ґ), (24ґ), где

- взаимно простые нечетные целые числа.

Случай 3

(12)

(13?)

(14)

(15?) ,

которые также являются решениями уравнения

(11).

Тогда сумма имеет вид:

Учитывая (10) и (15), можно получить разность :

- => .

Выразим из (31) и (16) :

=> (32)

=> (33).

По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .

Т.о., имеют вид:

(34), (35), а их сумма .

Т.к. из (4) c2 + b2 = 2 в, то и .

Из (15ґ) с учетом (20) выразим :

, т.е. (24ґ).

Т.о., , ,

где, т.е.

,

,

выражения которых, с учетом (24ґ), полностью совпадают с (6) и (7), т. е. с уравнениями

Теперь, с учетом (13?) и (14), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)

Теперь, учитывая (23), получим значение для b2:

,т.к. из (20) получается

.

Итак, (28), что для целых чисел неприемлемо.

Этот случай нас не интересует.

*******

Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.

Учитывая (26ґ), получим => (29ґґ).

Теперь, с учетом (29ґґ), можно получить окончательное выражение для с 2 (из (25ґ)):

, т.е. (30ґґ).

Таким образом, уравнение (11), решениями которого являются (12), (13?), (14) и (15ґ), в конечном счете имеет следующие решения:

(30ґґ), ,

(28), (24ґ),

где - взаимно простые нечетные целые числа.

***********

Случай 4

Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?), (14) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30ґґ), (28), (29ґґ) и (24ґ), т.е.

(30ґґґ), => (30ґґґ), (29ґґґ), (28ґ), => b = (28ґ), (24),

где - взаимно простые нечетные целые числа.

*******

Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).

Обозначим снова следующие выражения буквами С, В, N, К:

= С

= В

= N

= К.

Тогда эти первые 4 случая следующие:

1. (12) 2. (12ґ) (30ґ)

(13ґ) (28) (13) (28ґ)

(14) (29) (14ґ) (29ґ)

(15) (24) (15ґ) (24ґ)

3. (12) (30ґґ) 4. (12ґ) (30ґґґ)

(13ґ) (28) (13) (28ґ)

(14) (29ґґ) (14ґ) (29ґґґ)

(15ґ) (24ґ) (15) (24).

Рассмотрим еще 4 случая.

5. с2 = С 6. с2 = - С 7. c2 = C 8. c2 = -C

b2 = - B b2 = B b2 = - B b2 = B

= - N = N = - N = N

*******

Итак, рассмотрим случай 5.

Случай 5.

(12),

(13ґ),

(14ґ),

(15) , которые также являются решениями уравнения

(11)

Но данный случай аналогичен случаю 5 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):

(41), , где - взаимно простые нечетные целые (40), (38ґ), числа.

Следовательно, в данном рассматриваемом Случае 5 у уравнения (11) следующие решения:

(32) => b (32), (24)

(31) => с = (31), (29ґ) ,

где взаимно простые целые нечетные числа.

*******

Случай 6

Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32), (31), (29ґ) и (24), т.е.

(31ґ), (29),

(32ґ), (24ґ), где - взаимно простые целые нечетные числа.

Но этот случай нас не интересует, т.к. с не является целым числом.

*******

Случай 7

(12),

(13ґ),

(14ґ),

(15ґ), которые также являются решениями уравнения

(11).

Но данный случай аналогичен случаю 7 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):

(40), (38ґґґ),

(41ґґ), (33ґ),

где - взаимно простые нечетные целые числа.

Следовательно, в данном рассматриваемом случае 7 у уравнения (11) следующие решения:

(31) => с = (31), (29ґґґ) ,

(32ґ) => b (32ґґ), (24ґ),

где - взаимно простые целые нечетные числа.

*******

Случай 8

Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32ґґ), (31), (29ґґґ) и (24ґ), т.е.

(31ґ), (29ґґ),

, (24), где - взаимно простые целые нечетные числа.

Но этот случай нас не интересует, т.к. с не является целым числом.

********

Вывод

Итак, после анализа полученных решений в Случаях 1, …,8, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решения в следующих целых числах:

а) ; b ; ; ;

б) ; ; ; .

********

Таким образом, само исследование решений уравнения (11) в случаях 1, , 8 при доказательстве Утверждения 2 и его результат, полностью совпадают с исследованием решений уравнения (15) (в аналогичных случаях при доказательстве Утверждения 1) и с его результатом.

Действительно, вот, например, результаты исследований уравнения (15) в первых 4-х случаях Условия 1(Утверждение 1, Часть 2):

1. (16) 2. (16ґ) (39ґ)

(17ґ) (37) (17) (37ґ)

(18) (18ґ) (38ґ)

(19) (33) (19ґ) (33ґ)

3. (16) (39ґґ) 4. (16ґ) (39ґґґ)

(17ґ) (37) (17) (37ґ)

(18) (38ґґ) (18ґ) (38ґґґ)

(19ґ) (33ґ) (19) (33).

А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2,Часть 2):

1. (12) 2. (12ґ) (30ґ)

(13ґ) (28) (13) (28ґ)

(14) (29) (14ґ) (29ґ)

(15) (24) (15ґ) (24ґ)

3. (12) (30ґґ) 4. (12ґ) (30ґґґ)

(13ґ) (28) (13) (28ґ)

(14) (29ґґ) (14ґ) (29ґґґ)

(15ґ) (24ґ) (15) (24).

Наблюдается полное совпадение результатов (здесь подразумевается, что решения уравнения (15) c и b в верхних 4-х случаях соответствуют решениям уравнения (11)

с2 и b2 в нижних 4-х случаях). То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.

********

Поэтому нетрудно понять, что остальные результаты исследований случаев с 9-го по 28-й в данном доказательстве Утверждения 2 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждения 1) тоже совпадут и никаких новых решений нам не дадут, кроме как:

либо , либо , либо c и b не являются целыми числами, либо c и b - четные числа, чего не должно быть.

********

Из этого набора решений уравнения (11) нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - четное натуральное число, т.е. либо , либо .

*******

Но в теории чисел хорошо известно (Постников М.М. Введение в теорию алгебраических чисел. - М .- Наука. - 1982. - С. 13), что для четных степеней уравнения (где , q=2 q) - показатели четные при ? 0 и q ? 0 - натуральных, в уравнении целочисленные его решения (если они существуют) должны удовлетворять неравенствам:

|| > 2, | | > 2, | c| > 2 => |a| > 1, | b | > 1, |c| > 1,

т.е. в уравнении a2+ b4 = c4 b и c => в уравнении (1) при - четном числе b и c,

т.е. случаи (либо b = ± 1, либо c = ± 1) ОТСУТСТВУЮТ.

********

Вывод: 2-я часть «Утверждения 2» доказана.

*******

В результате исследования уравнения (1) мы имеем:

Вывод:

1. Уравнение (1) , где ?2 - четное не имеет решений в попарно простых целых числах a, b, и c таких, чтобы - было четным, и - нечетными целыми числами.

2. «Утверждение 2» нами полностью доказано.

*******

Примечание

1. Понятно, что приведенное доказательство «Утверждения 2» для q = 4 = 2m, где m = 2, распространяется и на показатель степени q=2m при m>2 - натуральном.

2. Если уравнение al+ b4 = c4, где ?2 - четное, неразрешимо в попарно простых целых числах a, b, и c, то и уравнение a4+ b4 = c4 не только неразрешимо в этих же числах, но и вообще неразрешимо ни в каких других целых числах (не являющихся попарно взаимно простыми целыми числами).

Вывод : Великая теорема Ферма для показателя l= q= 4 доказана.

3. Результат доказательства, а именно четность чисел a, b, c в уравнении al+ b4 = c4 (?2 - четное), а, следовательно, в уравнении a4+ b4 = c4 дает возможность в этом уравнении применить метод бесконечного спуска, о чем в свое время не только упоминалось самим Ферма, но и им использовалось.

На основании Выводов о Великой теореме Ферма (стр.34, стр.49) получаем окончательный вывод.

Окончательный «Вывод»: Великая теорема Ферма доказана.

********

Утверждение 3

Часть 1

Уравнение ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Часть 2

Возможны случаи: либо b = ± 1, либо c = ± 1.

*********

Часть первая (Утверждения 3)

Уравнение ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Доказательство

Первая часть доказательства «Утверждения 3» аналогична «Части первой» доказательства «Утверждения 2».

Итак, имеем уравнение (1), где ? 3 - нечетное натуральное, числа a, b, c (если, конечно, они существуют) - попарно взаимно простые целые числа (это наше допущение - вопреки «Утверждению 3»), среди которых только одно четное число a.

Из уравнения (1) следует:

=> (2).

Пусть (3), где и в - целые числа, отличные от нуля и c2 + b2 = 2 в (4), где в - нечетное число при с и b - нечетных.

******

Примечание

То, что в в уравнении (4) нечетное число, хорошо известный факт в теории чисел, который мы ранее уже учитывали («Примечание», стр. 35).

Представим нечетные числа b и c в виде:

b = 2n1 + 1; c = 2n2 + 1, где n1 и n2 - произвольные целые числа. Тогда

b2 + c2 = (2n1 + 1)2 + (2n2 + 1)2 = 2 [2 (n12+n22+n1+n2) + 1],

где в квадратных скобках нечетное число, что и требовалось доказать

*******

Тогда из уравнения (2) следует (с учетом (3) и (4)):

= , где c2 + b2 ? 0, т.к. c ? 0, b ? 0, т.е.

(5),

где k - целое число, отличное от нуля, т.к. c и b взаимно простые целые числа.

Из соотношений (4) и (5) определяем b2 и c2:

=> =>

Откуда в = b2 + 2l-2k (8) - нечетное число (из (4)) при b - нечетном и 2l-2k - четном, т.к. ? 3 - нечетное натуральное число.

Вывод:

1. Из соотношения (4) имеем:

(9) - нечетное число.

2. Из соотношения (5) имеем:

(10) пропорционально 2 (явно), т.е. - четное число.

Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.

*******

Теперь попробуем выразить сумму четвертых степеней чисел c и . Учитывая соотношения (6) и (7), получим:

,

т.е. (11),

где - целые числа, которые, в свою очередь, как мы знаем из предыдущего доказательства «Утверждения 1» (для ), могут быть выражены через другие целые числа следующим образом:

(12) - нечетное число при - нечетном;

(13) - нечетное число при - нечетном;

(14) - нечетное число при - нечетном;

(15) - четное число.

Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать t =0 и r=0 (при t =0 и - четные из (12) и (13), при r=0 = 0 (из (15)) => а = 0 (из (3)), что противоречит нашему допущению).

Для простоты опять (как в утверждениях 1 и 2) обозначим правые части уравнений (12), …, (15) буквами С, В, N, К, т.е.

= С

= В

= N

= К ,

и рассмотрим случай, когда в правых частях уравнений (12), …, (15) перед С, В, N, К, стоят «плюсы» и выполняется Условие1.

Условие1 (начало).

с2 = С

b2 = B

= N

Случай «+».

(12+) - нечетное число при - нечетном;

(13+) - нечетное число при - нечетном;

(14+) - нечетное число при - нечетном;

(15+) - четное число.

Казалось бы, все нормально: четность чисел в (12+), , (15+) совпадают при -нечетном с нашими предыдущими рассуждениями.

Однако не все так просто.

Помимо всего прочего, у нас есть еще две дополнительные информации (9) и (10) (о четности, заключенной в «Выводе» (стр.36)), вытекающие из предположения о том, что, вопреки условию «Утверждения 2», допустим, существуют попарно взаимно простые целые числа .

Попробуем найти сумму , воспользовавшись их выражениями (12+) и (13+):

,

т.е. => () пропорционально 4, откуда следует, учитывая (9) в «Выводе» (стр.36),

!

Т.е., вопреки «Выводу», является не нечетным, а четным числом, что возможно (из (14)) при -четном.

Однако, если - четное, то (в (12+) и (13+)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

Вывод. Следовательно, это уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах, где - нечетное натуральное число.

********

Мы рассмотрели случай, когда перед скобками в (12+),, (15+) стояли «плюсы».

Случай, когда перед теми же скобками стоят «минусы» (Случай «-»), аналогичен вышерассмотренному. Вывод тот же. (Смотри Случай «-» на стр.8.)

*********

Примечание

Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 3.

********

Т.к. уравнение (11) симметрично для с2 и b2, (для уравнения 11 они равнозначны), то с2 и b2 могут меняться своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.

Условие 2 (начало).

с2 = В

b2 = С

= N

«Новые» случаи «+» и «-».

(12ґ±) c2 В

(13ґ±) b2С

(14±) =± N

(15±) =±К.

И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.36)), !

Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (14±)) при -четном.

Однако, если - четное, то (в ((12ґ±) и ((13ґ±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Примечание

Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).

Но об этом во 2-ой части данного Утверждения 3.

********

Уравнение (11) симметрично и для и для (для уравнения (11) они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых и меняются своими выражениями (N и К)).

Условие 3.

с2 = С

b2 = B

= К

«Похожие» случаи «+» и «-».

(12±) c2 = ± () = ± С

(13±) b2 = ± () = ± В

(14ґ±) = = ±К

(15ґ±) = ± N.

Согласно одному из Выводов (формула (10) пропорционально 2 (явно), при . Но это возможно, глядя на четное (15ґ±) = ±N= ±() только при t-четном, при которых в (12±) и (13±) c и b - четные, чего не должно быть.

Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоят всевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение (стр.10), подобное для проведено при доказательстве Утверждения 1), мы придем к прежнему результату: c и b - четные, чего не должно быть.

Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Вывод

1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3 уравнение (1) (1), где ? 3 - нечетное натуральное число, не имеет решений в целых попарно взаимно простых отличных от нуля числах.

2. 1-я часть «Утверждения3» (для Условий 1 (начало), 2 (начало) и 3) доказана.

*********

Часть вторая (Утверждения3)

Возможны случаи: либо , либо .

(Об «Исключении» из общего правила)

Доказательство

Казалось бы, мы должны рассмотреть еще моменты в Условиях 1 и 2, когда перед скобками в (12),, (15) стоят разные знаки (как при доказательстве «Утверждения 2» в части 2). Интуиция подсказывает, что эта процедура опять нас приведет к известным значениям b и c: либо (из ), либо (из ), либо b и c - четные, чего не должно быть, либо b и c не являются целыми числами (подобно доказательству части 2 «Утверждения 2»).

Для подтверждения сказанного рассмотрим подробно только часть Условия 1.

Итак, осталось рассмотреть случаи, когда перед скобками стоят разные знаки.

Случай 1.

(12)

(13?)

(14)

(15) , которые также являются решениями уравнения

(11) .

Тогда сумма имеет вид:

Учитывая (10) и (15), можно получить разность :

=> .

Выразим из (17) и (16) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

, , а их сумма .

Т.к. из (4) c2 + b2 = 2 в, то => .

Из (15) с учетом (20) выразим :

, т.е. .

Т.о., , , т.е.

,

выражения которых, с учетом (24), полностью совпадают с (6) и (7), т.е. с уравнениями

Теперь, с учетом (13?) и (14), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)

Теперь, учитывая (23), получим значение для b2:

, т.к. из (20) получается

(20?).

Итак, (28), что для целых чисел неприемлемо.

Этот случай нас не интересует.

********

Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.

Учитывая (26), получим => .

Теперь, с учетом (29), можно получить окончательное выражение для с 2 (из (25)):

, т.е. .

Таким образом, уравнение (11), решениями которого являются (12), (13?) , (14), (15), в конечном счете имеет следующие решения:

, ,

(28), ,

где - взаимно простые нечетные целые числа.

*******

Случай 2

Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?) , (14), (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30), (28), (29) и (24), т.е.

(30ґ), => c = (30ґ), (29ґ)

(28ґ), => b = 1 (28ґ), (24ґ), где

- взаимно простые нечетные целые числа.

**********

Случай 3.

(12)

(13?)

(14)

(15?) , которые также являются решениями уравнения

(11).

Тогда сумма имеет вид:

Учитывая (10) и (15), можно получить разность :

- => .

Выразим из (31) и (16) :

=> (32)

=> (33)

По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .

Т.о., имеют вид:

(34), (35), а их сумма .

Т.к. из (4) c2 + b2 = 2 в, то и .

Из (15ґ) с учетом (20) выразим :

, т.е. (24ґ).

Т.о. , , где, т.е.

,

,

выражения которых, с учетом (24ґ), полностью совпадают с (6) и (7), т. е. с уравнениями

Теперь, с учетом (13?) и (14), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)

Теперь, учитывая (23), получим значение для b2:

,т.к. из (20) получается

.

Итак, (28), что для целых чисел неприемлемо. Этот случай нас не интересует.

*******

Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.

Учитывая (26ґ), получим => (29ґґ).

Теперь, с учетом (29ґґ), можно получить окончательное выражение для с 2 (из (25ґ)):

, т.е. (30ґґ).

Таким образом, уравнение (11), решениями которого являются (12), (13?), (14) и (15ґ), в конечном счете имеет следующие решения:

(30ґґ), ,

(28), (24ґ),

где - взаимно простые нечетные целые числа.

***********

Случай 4

Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13?), (14) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30ґґ), (28), (29ґґ) и (24ґ), т.е.

(30ґґґ), => (30ґґґ), (29ґґґ), (28ґ), => b = (28ґ), (24), где

- взаимно простые нечетные целые числа.

*******

Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).

Обозначим снова следующие выражения буквами С, В, N, К:

= С

= В

= N

= К

Тогда эти первые 4 случая следующие:

1. (12) 2. (12ґ) (30ґ)

(13ґ) (28) (13) (28ґ)

(14) (29) (14ґ) (29ґ)

(15) (24) (15ґ) (24ґ)

3. (12) (30ґґ) 4. (12ґ) (30ґґґ)

(13ґ) (28) (13) (28ґ)

(14) (29ґґ) (14ґ) (29ґґґ)

(15ґ) (24ґ) (15) (24).

Рассмотрим еще 4 случая.

5. с2 = С 6. с2 = - С 7. c2 = C 8. c2 = -C

b2 = - B b2 = B b2 = - B b2 = B

= - N = N = - N = N

*******

Итак, рассмотрим случай 5.

Случай 5.

(12),

(13ґ),

(14ґ),

(15) , которые также являются решениями уравнения

(11).

Но данный случай аналогичен случаю 5 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):

(41), , где - взаимно простые нечетные целые (40), (38ґ), числа.

Следовательно, в данном рассматриваемом случае 5 у уравнения (11) следующие решения:

(32) => b (32), (24)

(31) => с = (31), (29ґ) ,

где - взаимно простые целые нечетные числа.

*******

Случай 6

Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32), (31), (29ґ) и (24), т.е.

(31ґ), (29),

(32ґ), (24ґ),

где - взаимно простые целые нечетные числа.

Но этот случай нас не интересует, т.к. с не является целым числом.

*******

Случай 7.

(12),

(13ґ),

(14ґ),

(15ґ), которые также являются решениями уравнения

(11).

Но данный случай аналогичен случаю 7 «Части 2» «Утверждения 1», где получены следующие решения уравнения (15):

(40), (38ґґґ),

(41ґґ), (33ґ),

где - взаимно простые нечетные целые числа.

Следовательно, в данном рассматриваемом случае 7 у уравнения (11) следующие решения:

(31) => с = (31), (29ґґґ) ,

(32ґґ) => b (32ґґ), (24ґ), где -

взаимно простые целые нечетные числа.

*********

Случай 8

Нетрудно догадаться, что если бы у уравнения (11) были решения, противоположные по знаку с решениями (12), (13?), (14ґ) и (15ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (32ґґ), (31), (29ґґґ) и (24ґ), т.е.

(31ґ), (29ґґ),

, (24),

где - взаимно простые целые нечетные числа.

Но этот случай нас не интересует, т.к. с не является целым числом.

Таким образом, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решение (после анализа всех полученных решений) в следующих целых числах:

а) ; b ; ; ;

б) ; ; ; .

**********

Вывод

Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (11) , где c и b - взаимно простые целые нечетные числа, имеет решения в следующих целых числах:

а) ; b ; ; ;

б) ; ; ; .

********

Таким образом, само исследование решений уравнения (11) в случаях 1, …, 8 при доказательстве Утверждения 3 и его результат полностью совпадают с исследованием решений уравнения (11) (в аналогичных случаях при доказательстве Утверждения 2) и с его результатом.

Действительно, вот, например, результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 2, Часть 2):

1. (12) 2. (12ґ) (30ґ)

(13ґ) (28) (13) (28ґ)

(14) (29) (14ґ) (29ґ)

(15) (24) (15ґ) (24ґ)

3. (12) (30ґґ) 4. (12ґ) (30ґґґ)

(13ґ) (28) (13) (28ґ)

(14) (29ґґ) (14ґ) (29ґґґ)

(15ґ) (24ґ) (15) (24).

А вот результаты исследований уравнения (11) в первых 4-х случаях Условия 1 (Утверждение 3, Часть 2):

1. (12) 2. (12ґ) (30ґ)

(13ґ) (28) (13) (28ґ)

(14) (29) (14ґ) (29ґ)

(15) (24) (15ґ) (24ґ)

3. (12) (30ґґ) 4. (12ґ) (30ґґґ)

(13ґ) (28) (13) (28ґ)

(14) (29ґґ) (14ґ) (29ґґґ)

(15ґ) (24ґ) (15) (24).

Наблюдается полное совпадение результатов. То же самое совпадение результатов наблюдается и в следующих за ними 4-х случаях.

*********

Нетрудно понять, что остальные случаи с 9-го по 28-й в данном доказательстве Утверждения 3 (подобные вышерассмотренным случаям 9, …, 28 при доказательстве Утверждений 1 и 2) никаких новых решений нам не дадут, кроме как:

либо , либо , либо c и b не являются целыми числами, либо c и b - четные числа , чего не должно быть.

********

Из этого набора решений уравнения (11), нас, естественно, интересуют только те, которые могут являться решениями уравнения (1) (1), где - нечетное натуральное число, т.е. либо , либо , которые таковыми и являются.

*******

Вывод: 2-я часть «Утверждения 3» доказана.

В результате исследования уравнения (1), мы имеем:

Вывод:

1. Уравнение (1) ( ? 3 - нечетное натуральное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Возможны случаи: либо , либо .

2. «Утверждение 3» нами полностью доказано.

*******

Примечание

Понятно, что приведенное сокращенное доказательство «Утверждения 3» (со ссылкой на предыдущее доказательство Утверждения 2), где рассматривается уравнение al+ b4 = c4 при ? 3 - нечетном натуральном и q = 4 = 2 m , где m = 2, распространяется и на показатель степени q = 2 m , где m > 2 - натуральном.

**********

На основании доказательства справедливости «Утверждения 1», «Утверждения 2» и «Утверждения 3» вытекает и справедливость «Общего утверждения».

ОБЩИЙ ВЫВОД

1. Уравнение (, - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .

Таким образом, «Общее утверждение» доказано.

ЛИТЕРАТУРА:

1. Алексеев С.Ф. Два обобщения классических формул // Квант. - 1988. - №10. - С. 23.

2.Постников М.М. Введение в теорию алгебраических чисел. - М., Наука. - 1982 - С. 13.

Май 2009 г., Скворцов А.П.

Уважаемые любители математики и специалисты!

Если не трудно, попробуйте разобраться с данной работой и по возможности ее оценить.

Если в ней есть что-то стоящее, интересное, то очень хотелось бы получить отзыв о данной работе.


Подобные документы

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат [29,1 K], добавлен 19.11.2010

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.

    статья [20,8 K], добавлен 29.08.2004

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат [13,2 K], добавлен 01.12.2010

  • Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.

    дипломная работа [351,4 K], добавлен 26.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.