Доказательство утверждения, частным случаем которого является великая теорема Ферма
Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.
Рубрика | Математика |
Вид | творческая работа |
Язык | русский |
Дата добавления | 08.08.2010 |
Размер файла | 856,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
114
Работа Скворцова Александра Петровича,
учителя, ветерана педагогического труда
Доказательство утверждения, частным случаем которого является великая теорема Ферма
Содержание
Общее утверждение
Утверждение 1
Доказательство Части первой «Утверждения 1»
Доказательство Части второй «Утверждения 1»
Пример
Примечание
«Вывод» о Великой теореме Ферма (простое)
Утверждение 2
Доказательство Части первой «Утверждения 2»
Доказательство Части второй «Утверждения 2»
Примечание
Окончательный «Вывод» о Великой теореме Ферма
Утверждение 3
Доказательство Части первой «Утверждения 3»
Доказательство Части второй «Утверждения 3»
Примечание
Общий вывод
Литература
Доказательство нижеприведённого «Утверждения» осуществлено элементарными средствами. В данной работе рассматриваются уравнения , частными случаями которых являются уравнения Ферма , где а - чётное число, и - целые числа, , , - =натуральные числа.
Метод, используемый в этой работе, опирается на применение дополнительного квадратного уравнения и его общего решения, чётность которого совпадает с числами, исследуемыми в моей работе.
Этот метод позволяет:
1. Судить о возможности существования целых решений уравнения Ферма для , т.е. о возможности существования «Пифагоровых троек», т.к. при рассуждениях никаких «противоречий» не возникает (доказательство этого в данной работе не приведено).
2. Судить об отсутствии решений в попарно взаимно простых целых числах уравнения , где - натуральное число, а - чётное число, т.к. при рассуждениях возникают «противоречия» (доказательство этого в данной работе не приведено, но дан пример на стр. 33).
3. Судить о возможности существования частного решения уравнения при (или b = ±1, или c = ±1), которое входит в п. «Исключения» моего общего «Утверждения». И такие решения следующие:
а) b = ±1; c = ±3; a = 2.
б) b = 3; c = ±1; a = -2 («Пример» на стр. 33).
4. Судить о неразрешимости в целых числах уравнения , где а - чётное число. Это хорошо известный факт в теории чисел (доказательство этого в данной работе приведено).
5. Судить о неразрешимости в целых числах и уравнения Ферма . Это тоже хорошо известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
6. Судить о неразрешимости в целых числах уравнения Ферма , где - натуральное число. Это тоже уже известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).
**********
Так как данное доказательство «Общего Утверждения» в этой работе проведено мною элементарными средствами, то думаю, и своё «Утверждение» великий Ферма вполне мог доказать подобным методом.
И последнее. Я думаю, что специалистам, наверное, известны ещё некоторые конкретные примеры (частные случаи уравнения ), подпадающих под доказываемое в данной работе «Общего Утверждения». Если такие примеры имеются, то в свою очередь это будет являться дополнительным подтверждением правильности выбранного пути доказательства вышеназванного «Общего Утверждения».
?
ОБЩЕЕ УТВЕРЖДЕНИЕ, частным случаем которого является Великая теорема Ферма
1. Уравнение (, - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .
***********
Чтобы доказать «ОБЩЕЕ УТВЕРЖДЕНИЕ», необходимо рассмотреть 2 случая
для показателя q:
1) при - натуральном;
2) при - натуральном, а для этого достаточно рассмотреть случай .
Утверждение 1, частным случаем которого является Великая теорема Ферма, для простого показателя
Часть 1
Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Часть 2
Возможны случаи: либо , либо .
**********
Последнее утверждение (либо , либо ) в дальнейшем будем называть «исключением» из общего правила.
*********
Часть первая (Утверждения 1)
Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
Доказательство
Понятно, что доказательство достаточно рассмотреть для - простого.
Докажем данное «Утверждение 1» методом от противного. Предположим, что уравнение разрешимо в отличных от нуля попарно взаимно простых целых числах , и . И если в конце доказательства мы придем к противоречию, доказав, что числа , и не являются попарно взаимно простыми целыми числами, то это будет означать, что «Утверждение 1» справедливо.
Из уравнения (1) следует:
(2),
где - четное целое число, т.к. и - нечетные;
? 0, т.к. и - взаимно простые нечетные целые числа, не равные нулю;
- нечетное целое число при и - нечетных, - простом.
********
Примечание
То, что - нечетное число при и - нечетных, хорошо известный факт в теории чисел.
Для подтверждения данного факта достаточно использовать разложение бинома
Ньютона , , , … и тогда получим для :
- сумму трех нечетных слагаемых, равную нечетному числу.
Для :
- сумму пяти нечетных слагаемых, равную нечетному числу.
Для степени - простой можно доказать, что при и нечетных
(3) - сумма нечетных слагаемых, равная нечетному числу (Алексеев С.Ф. Два обобщения классических формул // Квант. - 1988. - №10. - С. 23).
*******
Пусть (4),
где - нечетное число (на основании (3)).
Тогда уравнение (2) примет вид:
(5),
где - четное число, которое можно представить в виде
(6),
где - целое число (при = 0 а = 0, что противоречит нашему допущению),
(4) - нечетное число.
Тогда из соотношения (5) с учетом (6) получаем:
, т.е. (7), где - целое число (), - натуральное число.
Сумму же нечетных чисел и обозначим через , т.е.
(8),
где - целое число (, т.к. и - взаимно простые нечетные целые числа, не равные нулю).
Из (7) и (8) определим и :
=> =>
Откуда (11) - нечетное число при - нечетном и - четном, т.к. , причем (12) (явно) при .
********
Вывод:
На основании (8) и (11) имеем: (13) - нечетное число;
из соотношений (7) и (12) имеем: (14) (явно) при .
Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.
*******
Теперь попробуем выразить сумму квадратов чисел c и . Учитывая соотношения (9) и (10), получим:
Таким образом, получили следующее уравнение:
(15),
где - целые числа, которые, являясь решениями уравнения (15), в свою очередь, могут быть выражены через другие целые числа следующим образом:
(16) - нечетное число при - нечетном;
(17) - нечетное число при - нечетном;
(18) - нечетное число при - нечетном;
(19) - четное число.
Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать
t =0 и r=0 (при t =0 и - четные из (16) и (17), при r=0 = 0 (из (19)) => а = 0 (из (6)), что противоречит нашему допущению).
*******
Примечание.
Общий вид уравнения (15) следующий:
(20) ,
целыми решениями которого (это известный факт в теории чисел) являются:
(21) ;
(22) ;
(23) ;
(24) , где - целые числа.
То, что (21), …, (24) являются решениями уравнения (20), легко проверяется их подстановкой в данное уравнение (20), которое при этом превращается в тождество.
*******
Для простоты обозначим правые части уравнений (16), …, (19) буквами С, В, N, К, т.е.
= С
= В
= N
= К,
и рассмотрим случай, когда в правых частях уравнений (16), …, (19) перед С, В, N, К, стоят «плюсы» и выполняется Условие 1.
Условие1 (начало).
с = С
b = B
n = N
Случай «+».
(16+) = С - нечетное число при - нечетном;
(17+) = В - нечетное число при - нечетном;
(18+) = N - нечетное число при - нечетном;
(19+) = К - четное число.
Казалось бы, все в порядке: четность в (16+), …, (19+) совпадает при -нечетном с нашими предыдущими рассуждениями.
Однако не все так просто.
Помимо всего прочего, у нас есть еще две дополнительные информации (13) и (14) (о четности, заключенной в «Выводе» (стр.5)), вытекающие из предположения о том, что, вопреки условию «Утверждения 1», допустим, существуют попарно взаимно простые целые числа .
Попробуем найти сумму , воспользовавшись их выражениями (16+) и (17+):
,
т.е. пропорционально 4, откуда следует, учитывая (13) в «Выводе» (стр.5), !
Т.е., вопреки «Выводу», в Случае «+» является не нечетным, а четным числом, что возможно (из (18+)) при -четном.
Однако, если - четное, то (в (16+) и (17+)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Вывод. Следовательно, это уравнение (1) в данном Условии 1 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Казалось бы, 1-я часть «Утверждения 1» доказана. На самом деле у уравнения (15) есть еще решения. Нетрудно догадаться, что решениями уравнения (15) являются следующие выражения n, :
Случаи «+» и «-».
(16±) ;
(17±) ;
(18±) ;
(19±) .
Мы рассмотрели случай, когда перед скобками в (16±), …,(19±) стояли только «плюсы» (Случай «+»)
******
Случай «-».
(16-) ;
(17-) ;
(18-) ;
(19-) .
Случай, когда перед теми же скобками стоят только «минусы» (Случай «-»), аналогичен вышерассмотренному Случаю «+».
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этом Случае «-» является не нечетным, а четным числом, что возможно (из (18-)) при -четном.
Однако, если - четное, то (в (16-) и (17-)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в Случае «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание.
Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 1.
********
Т.к. уравнение (15) симметрично для с и b (для уравнения (15) они равнозначны), то с и b могут обмениваться не только знаками «+» и «-», но и своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.
Условие 2 (начало)
с = B
b = С
n = N
«Новые» случаи «+» и «-».
(16ґ±) c =± В
(17ґ±) b =±С
(18±) =± N
(19±) =±К
И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !
Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (18±)) при -четном.
Однако, если - четное, то (в ((16ґ±) и ((17ґ±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.
Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.
*******
Примечание
Осталось рассмотреть еще 14 случаев (пояснение ниже), рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом во 2-ой части данного Утверждения 1.
********
Уравнение (15) симметрично и для n и для (для уравнения 15 они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством n и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых n и меняются своими выражениями (N и К )).
Условие 3
c = C
b = B
n = К
N
« Похожие» случаи «+» и «-».
(16±) с = ± С = ± ()
(17±) b = ± В =± ()
(18ґ±) n = ± К = ± ()
(19ґ±) = ± N= ± ()
Согласно одному из Выводов (формула (14)) (явно) при . Но это возможно, глядя на (19ґ±) = ±N= ±() только при t- четном, при которых в (16±) и (17±) c и b - четные, чего не должно быть.
Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоят всевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение следует)), мы придем к прежнему результату: c и b - четные, чего не должно быть.
Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.
********
Пояснение (почему не надо в Условии 3 затрагивать «новые свойства »).
Запишем Условия (1, …, 3).
Условие 1 Условие 2 Условие 3 Условие 2+3
с = С с = B c = C c = B
b = B b = С b = B => b = C
n = N n = N n = К n = К
Если теперь поменять обозначения между собой в Условии 2+3 с на b, а b на c
в верхних двух строчках и n на , а на n в нижних двух строчках, то вернемся снова к обозначениям в Условии 1, которое во 2-й части «Утверждения 1» нами будет исследовано до конца:
Условие 2+3 Условие 1
c = B b = B с = С
b = C => с = С => b = B
n = К n = N
n = N
Вывод.
1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3,
Уравнение (1) (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.
2. 1-я часть «Утверждения 1» (для Условий 1(начало), 2 (начало) и 3) доказана.
*********
Часть вторая (Утверждения1)
Возможны случаи: либо , либо .
(Об «Исключении» из общего правила)
Доказательство
Условие 1 (продолжение).
Всего случаев 16. Два из них рассмотрели в 1-й части Утверждения 1 (Случаи «-» и «+»).
Осталось рассмотреть еще 14 случаев, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки.
Пояснение.
Случаев всего 14, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки и число их равно числу Р перестановок из m = 4 элементов (c, b, n и ) по n = 1; 2; 3 элементов (плюсов (+) перед С, В, N и К) в каждом (по n = 0; 4 элементов ( Р = 1+1 = 2 ) мы уже рассмотрели - это 2 случая: Случаи «-» и «+» соответственно):
********
Случай 1.
(16)
(17?)
(18)
(19)
Тогда сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для b:
, т.к. из (29) вытекает .
Итак, .
Учитывая (35), получим => .
Теперь, с учетом (38),можно получить окончательное выражение для с (из (34)):
, т.е. .
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19), в конечном счете имеет следующие решения:
, ,
, ,
где - взаимно простые нечетные целые числа.
*******
Случай 2
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39), (37), (38) и (33), т.е.
, ,
, ,
где - взаимно простые нечетные целые числа.
*******
Случай 3
(16)
(17?)
(18)
(19?).
Тогда сумма имеет вид:
Учитывая (14) и (19?), можно получить разность :
- => (26?).
Выразим из (25) и (26?) :
=>
=> .
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(30?), (31?), а их сумма .
Т.к. из (8) , то => .
Из (19ґ) с учетом (29) выразим :
, т.е. (33ґ).
Т.о., , ,
где ,
т.е. (34ґ), (35ґ), выражения которых, с учетом (33ґ), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для b:
, т.к. из (29) вытекает .
Итак, .
Учитывая (35ґ), получим => ().
Теперь, с учетом (), можно получить окончательное выражение для с (из (34ґ)):
, т.е. (39ґґ).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19ґ), в конечном счете имеет следующие решения:
(39ґґ), (38ґґ), где - взаимно простые нечетные
, (33ґ), целые числа.
********
Случай 4
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39ґґ), (37), (38ґґ) и (33ґ), т.е.
(39ґґґ), (38ґґґ), (37ґ), (33),
где - взаимно простые нечетные целые числа.
*******
Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (15).
Ранее мы обозначили правые части уравнений (16),…, (19) буквами С, В, N, К, т.е
= С
= В
= N
= К
Тогда эти первые 4 случая следующие:
1. (16) 2. (16ґ) (39ґ)
(17ґ) (37) (17) (37ґ)
(18) (18ґ) (38ґ)
(19) (33) (19ґ) (33ґ)
3. (16) (39ґґ) 4. (16ґ) (39ґґґ)
(17ґ) (37) (17) (37ґ)
(18) (38ґґ) (18ґ) (38ґґґ)
(19ґ) (33ґ) (19) (33)
*********
Рассмотрим еще 10 случаев.
5. с = С 6. с = - С 7. c = C 8. c = - C
b = - B b = B b = - B b = B
n= - N n = N n = - N n = N
9. с = С. 10. с = -С 11. с = С 12. с = -С
b = B b = -B b = B b = -B
n =- N n = N n = N n =- N
13. с = С 14. с = -С
b = B b =- B
n =- N n = N
*******
Итак, рассмотрим случай 5.
Случай 5
(16)
(17ґ)
(18ґ)
(19).
Тогда сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18ґ), найдем разность :
т.к. , т.е. (36ґ).
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), найдем разность (b-n)-n:
где .
Т.к. b + c =2n, то b-2n = b - (b + c) = - c = -1 => c = 1 (40).
Учитывая (34), получим => (38ґ).
Теперь, с учетом (38ґ), можно получить окончательное выражение для b (из (35)):
, т.е. (41).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19), в конечном счете, имеет следующие решения:
(41), , где - взаимно простые нечетные целые (40), (38ґ), числа
*******
Случай 6
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17'), (18ґ) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41), (38ґґ) и (33), т.е.
(40ґ), (38),
(41ґ), (33ґ), где - взаимно простые целые нечетные числа.
*******
Случай7
(16)
(17ґ)
(18ґ)
(19ґ)
Тогда сумма имеет вид:
Учитывая (14) и (19ґ), можно получить разность :
=> (26ґ).
Выразим из (25) и (26ґ) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
(30ґ), (31ґ), а их сумма .
Т.к. из (8) , то => .
Из (19ґ), с учетом (29), выразим :
, т.е. (33ґ).
Т.о., , , т.е.
(34ґ),
(35ґ),
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17?) и (18ґ), найдем разность :
т.к. , т.е. (36ґ).
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), найдем разность (b-n)-n:
где .
Т.к. b+c=2n, то b-2n = b-(b+c) = -c = -1 => c = 1 (40).
Учитывая (34ґ), получим => (38ґґґ).
Теперь, с учетом (38ґґґ), можно получить окончательное выражение для b (из (35ґ)):
, т.е. (41ґґ).
Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19ґ), в конечном счете, имеет следующие решения:
(40), (38ґґґ),
(41ґґ), (33ґ), где - взаимно простые нечетные целые числа.
*******
Случай 8
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18ґ) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41ґ), (38ґґґ) и (33ґ), т.е.
(40ґ), (38ґґ),
, (33), где - взаимно простые целые нечетные числа.
*******
Вывод
Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (15) , где c и b - взаимно простые целые нечетные числа, имеет решение в следующих целых числах:
а) ; ; ; ;
б) ; ; ; .
А это в свою очередь означает, что и уравнение при вышеназванных условиях (смотри Утверждение1) может иметь целые решения либо при , либо при .
Случай 9
(16)
(17)
(18ґ)
(19)
Из (16) и (17) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно,
==> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*********
Случай 10
(16ґ)
(17ґ)
(18)
(19ґ),
т.е. по сравнению с предыдущим случаем 9 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 9.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, -=-=> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16ґ) и (17ґ) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Случай 11
(16)
(17)
(18)
(19ґ)
Из (16) и (17) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Случай 12
(16ґ)
(17ґ)
(18ґ)
(19),
т.е. по сравнению с предыдущим случаем 11 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 11.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Случай 13
(16)
(17)
(18ґ)
(19ґ)
Из (16) и (17) имеем:
Учитывая (14) и (19ґ), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Случай 14
(16ґ)
(17ґ)
(18)
(19),
т.е. по сравнению с предыдущим случаем 13 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 13.
Действительно, из (16ґ) и (17ґ) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
***********
Вывод.
1. Таким образом, случаи 9,…, 14 новых возможных решений уравнения (15) не выявили.
2. Условие 1 (продолжение) нами полностью рассмотрено.
**********
Условие 2 (продолжение).
Ранее мы отмечали, что уравнение (15) симметрично для с и b, поэтому с и b могут меняться своими выражениями (C и В). Это свойство нами было названо «новым свойством ».
В 1-й части Утверждения 1 мы рассмотрели два «Новых» случая «+» и «-».
Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).
********
«Новый» случай 15
(Отличающийся «новым свойством » от случая 1: с = С, b= -В, n= N, K)
с = - В (16-B),
b= С (17+C),
n= N (18),
K (19) - это общие решения уравнения (15), окончательным видом которых являются (это мы покажем далее) окончательные решения уравнения (15) в случае 8, т.е.
(40ґ), (38ґґ),
, (33),
где - взаимно простые нечетные целые числа.
Доказательство
Сумма имеет вид:
Учитывая (14) и (19), можно получить разность :
=> .
Выразим из (25) и (26) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
, выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь найдем сумму с:
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), получим значение для с:
,
т.к. из (29) вытекает .
Итак, .
Учитывая (34), получим => .
Теперь, с учетом (38ґґ), можно получить окончательное выражение для b (из (35)):
, т.е. .
Таким образом, уравнение (15), решениями которого являются (16-B), (17+C), (18) и (19), в конечном счете имеет следующие решения (являющиеся окончательными решениями в случае 8):
, где - взаимно простые нечетные целые числа, ч.т.д.
*********
Примечание
То, что окончательные решения в случаях 15 и 8 одинаковые, вытекает и из следующего соображения, которое используем в дальнейшем (для быстроты суждений).
Случай 15. Случай 8
с = - В (16-B), с = - С (16ґ),
b= С (17+C), b= В (17),
n= N (18), n= N (18),
K (19), K (19).
У этих случаев одинаковые знаки в правых частях с и b, но разные выражения (С и В), в остальном эти случаи похожи.
Соображение
Если в этих случаях решения совпадают, значит, у них надо выявить что-то общее. Этим общим свойством для них являются произведение и разность с и b.
«Общие свойства для с и b»:
сb= -СВ, с - b= -С -В, с - b=2К
Воспользуемся свойствами корней квадратного уравнения (теоремой Виета). Имеем:
с(-b)= СВ, с+(- b)= -С -В = 2К.
Отсюда получаем квадратное уравнение
- 2К+ С В = 0 => X1,2 = К ,
где, например, Х1 = -b, а Х2 = с, то есть
Х1 = -b = К +=+= += + = -В => b = В,
где на основании и Х1 = - b= -
Х2= с = К-= -= -= - = -С => с = - С,
где на основании (40ґ) и Х2 = Таким образом, мы получили случай 8:
Случай 8
с = - С (16ґ),
b= В (17),
n= N (18),
K (19),
где
, а - взаимно простые нечетные целые числа.
Теперь обозначим Х1 = с, а Х2 = - b. Тогда получим:
Х1 = с = К+=+= += + = -В => с = -В,
где на основании (40ґ) и Х1 = с = -1.
Х2 = - b = К-= -= -= - = -С => - b= -С => b = С,
где на основании и Х2 = -
Таким образом, мы получили случай 15:
Случай 15
с = -В (16-B),
b= С (17+C),
n= N (18),
K (19),
где
, а - взаимно простые нечетные целые числа.
Таким образом, одно и то же квадратное уравнение - 2К+ С В = 0, дает одинаковые решения X1,2 = К (X1(2) =- Х2(1) = -1) и для Случая 8 и для Случая 15, значит и одинаковые их окончательные решения:
, а - взаимно простые нечетные целые числа.
В этом мы непосредственно и убедились.
Следовательно, «Общие свойства для с и b» (сb= -СВ, с - b= -С -В, с - b= 2К) действительно определяют Случаи 15 и 8, имеющие одинаковые знаки у с и b и отличающиеся друг от друга у них выражениями (С и В), а, значит, и одинаковый вид их окончательных решений. Этой похожестью с и b, их отличием друг от друга и вышерассмотренными «Общими свойствами для с и b» мы воспользуемся при рассмотрении последующих случаев.
*********
Вывод (критерий одинаковости окончательных решений).
Если в каких-либо двух случаях наблюдаются вышерассмотренные «Общие свойства для с и b» ( сb = constґ, с - b = constґґ, с - b = constґґґ ), то в этих случаях окончательные решения имеют одинаковый вид.
Подобные документы
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат [29,1 K], добавлен 19.11.2010Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.
реферат [13,2 K], добавлен 01.12.2010Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа [351,4 K], добавлен 26.05.2012