Доказательство утверждения, частным случаем которого является великая теорема Ферма

Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.

Рубрика Математика
Вид творческая работа
Язык русский
Дата добавления 08.08.2010
Размер файла 856,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

114

Работа Скворцова Александра Петровича,

учителя, ветерана педагогического труда

Доказательство утверждения, частным случаем которого является великая теорема Ферма

Содержание

Общее утверждение

Утверждение 1

Доказательство Части первой «Утверждения 1»

Доказательство Части второй «Утверждения 1»

Пример

Примечание

«Вывод» о Великой теореме Ферма (простое)

Утверждение 2

Доказательство Части первой «Утверждения 2»

Доказательство Части второй «Утверждения 2»

Примечание

Окончательный «Вывод» о Великой теореме Ферма

Утверждение 3

Доказательство Части первой «Утверждения 3»

Доказательство Части второй «Утверждения 3»

Примечание

Общий вывод

Литература

Доказательство нижеприведённого «Утверждения» осуществлено элементарными средствами. В данной работе рассматриваются уравнения , частными случаями которых являются уравнения Ферма , где а - чётное число, и - целые числа, , , - =натуральные числа.

Метод, используемый в этой работе, опирается на применение дополнительного квадратного уравнения и его общего решения, чётность которого совпадает с числами, исследуемыми в моей работе.

Этот метод позволяет:

1. Судить о возможности существования целых решений уравнения Ферма для , т.е. о возможности существования «Пифагоровых троек», т.к. при рассуждениях никаких «противоречий» не возникает (доказательство этого в данной работе не приведено).

2. Судить об отсутствии решений в попарно взаимно простых целых числах уравнения , где - натуральное число, а - чётное число, т.к. при рассуждениях возникают «противоречия» (доказательство этого в данной работе не приведено, но дан пример на стр. 33).

3. Судить о возможности существования частного решения уравнения при (или b = ±1, или c = ±1), которое входит в п. «Исключения» моего общего «Утверждения». И такие решения следующие:

а) b = ±1; c = ±3; a = 2.

б) b = 3; c = ±1; a = -2 («Пример» на стр. 33).

4. Судить о неразрешимости в целых числах уравнения , где а - чётное число. Это хорошо известный факт в теории чисел (доказательство этого в данной работе приведено).

5. Судить о неразрешимости в целых числах и уравнения Ферма . Это тоже хорошо известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).

6. Судить о неразрешимости в целых числах уравнения Ферма , где - натуральное число. Это тоже уже известный факт в теории чисел (в данной работе это утверждение является следствием более общего утверждения).

**********

Так как данное доказательство «Общего Утверждения» в этой работе проведено мною элементарными средствами, то думаю, и своё «Утверждение» великий Ферма вполне мог доказать подобным методом.

И последнее. Я думаю, что специалистам, наверное, известны ещё некоторые конкретные примеры (частные случаи уравнения ), подпадающих под доказываемое в данной работе «Общего Утверждения». Если такие примеры имеются, то в свою очередь это будет являться дополнительным подтверждением правильности выбранного пути доказательства вышеназванного «Общего Утверждения».

?

ОБЩЕЕ УТВЕРЖДЕНИЕ, частным случаем которого является Великая теорема Ферма

1. Уравнение (, - натуральные числа) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

2. Но есть и «исключение» из данного утверждения: среди этих чисел , и может быть либо , либо .

***********

Чтобы доказать «ОБЩЕЕ УТВЕРЖДЕНИЕ», необходимо рассмотреть 2 случая

для показателя q:

1) при - натуральном;

2) при - натуральном, а для этого достаточно рассмотреть случай .

Утверждение 1, частным случаем которого является Великая теорема Ферма, для простого показателя

Часть 1

Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Часть 2

Возможны случаи: либо , либо .

**********

Последнее утверждение (либо , либо ) в дальнейшем будем называть «исключением» из общего правила.

*********

Часть первая (Утверждения 1)

Уравнение (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

Доказательство

Понятно, что доказательство достаточно рассмотреть для - простого.

Докажем данное «Утверждение 1» методом от противного. Предположим, что уравнение разрешимо в отличных от нуля попарно взаимно простых целых числах , и . И если в конце доказательства мы придем к противоречию, доказав, что числа , и не являются попарно взаимно простыми целыми числами, то это будет означать, что «Утверждение 1» справедливо.

Из уравнения (1) следует:

(2),

где - четное целое число, т.к. и - нечетные;

? 0, т.к. и - взаимно простые нечетные целые числа, не равные нулю;

- нечетное целое число при и - нечетных, - простом.

********

Примечание

То, что - нечетное число при и - нечетных, хорошо известный факт в теории чисел.

Для подтверждения данного факта достаточно использовать разложение бинома

Ньютона , , , … и тогда получим для :

- сумму трех нечетных слагаемых, равную нечетному числу.

Для :

- сумму пяти нечетных слагаемых, равную нечетному числу.

Для степени - простой можно доказать, что при и нечетных

(3) - сумма нечетных слагаемых, равная нечетному числу (Алексеев С.Ф. Два обобщения классических формул // Квант. - 1988. - №10. - С. 23).

*******

Пусть (4),

где - нечетное число (на основании (3)).

Тогда уравнение (2) примет вид:

(5),

где - четное число, которое можно представить в виде

(6),

где - целое число (при = 0 а = 0, что противоречит нашему допущению),

(4) - нечетное число.

Тогда из соотношения (5) с учетом (6) получаем:

, т.е. (7), где - целое число (), - натуральное число.

Сумму же нечетных чисел и обозначим через , т.е.

(8),

где - целое число (, т.к. и - взаимно простые нечетные целые числа, не равные нулю).

Из (7) и (8) определим и :

=> =>

Откуда (11) - нечетное число при - нечетном и - четном, т.к. , причем (12) (явно) при .

********

Вывод:

На основании (8) и (11) имеем: (13) - нечетное число;

из соотношений (7) и (12) имеем: (14) (явно) при .

Это дополнительная информация о свойствах предполагаемых взаимно простых числах , которая в дальнейшем нам очень пригодится.

*******

Теперь попробуем выразить сумму квадратов чисел c и . Учитывая соотношения (9) и (10), получим:

Таким образом, получили следующее уравнение:

(15),

где - целые числа, которые, являясь решениями уравнения (15), в свою очередь, могут быть выражены через другие целые числа следующим образом:

(16) - нечетное число при - нечетном;

(17) - нечетное число при - нечетном;

(18) - нечетное число при - нечетном;

(19) - четное число.

Примечание: во всех последующих исследованиях (Случаях) нас не будут интересовать

t =0 и r=0 (при t =0 и - четные из (16) и (17), при r=0 = 0 (из (19)) => а = 0 (из (6)), что противоречит нашему допущению).

*******

Примечание.

Общий вид уравнения (15) следующий:

(20) ,

целыми решениями которого (это известный факт в теории чисел) являются:

(21) ;

(22) ;

(23) ;

(24) , где - целые числа.

То, что (21), …, (24) являются решениями уравнения (20), легко проверяется их подстановкой в данное уравнение (20), которое при этом превращается в тождество.

*******

Для простоты обозначим правые части уравнений (16), …, (19) буквами С, В, N, К, т.е.

= С

= В

= N

= К,

и рассмотрим случай, когда в правых частях уравнений (16), …, (19) перед С, В, N, К, стоят «плюсы» и выполняется Условие 1.

Условие1 (начало).

с = С

b = B

n = N

Случай «+».

(16+) = С - нечетное число при - нечетном;

(17+) = В - нечетное число при - нечетном;

(18+) = N - нечетное число при - нечетном;

(19+) = К - четное число.

Казалось бы, все в порядке: четность в (16+), …, (19+) совпадает при -нечетном с нашими предыдущими рассуждениями.

Однако не все так просто.

Помимо всего прочего, у нас есть еще две дополнительные информации (13) и (14) (о четности, заключенной в «Выводе» (стр.5)), вытекающие из предположения о том, что, вопреки условию «Утверждения 1», допустим, существуют попарно взаимно простые целые числа .

Попробуем найти сумму , воспользовавшись их выражениями (16+) и (17+):

,

т.е. пропорционально 4, откуда следует, учитывая (13) в «Выводе» (стр.5), !

Т.е., вопреки «Выводу», в Случае «+» является не нечетным, а четным числом, что возможно (из (18+)) при -четном.

Однако, если - четное, то (в (16+) и (17+)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию в Случае «+» с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

Вывод. Следовательно, это уравнение (1) в данном Условии 1 не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Казалось бы, 1-я часть «Утверждения доказана. На самом деле у уравнения (15) есть еще решения. Нетрудно догадаться, что решениями уравнения (15) являются следующие выражения n, :

Случаи «+» и «-».

(16±) ;

(17±) ;

(18±) ;

(19±) .

Мы рассмотрели случай, когда перед скобками в (16±), …,(19±) стояли только «плюсы» (Случай «+»)

******

Случай «-».

(16-) ;

(17-) ;

(18-) ;

(19-) .

Случай, когда перед теми же скобками стоят только «минусы» (Случай «-»), аналогичен вышерассмотренному Случаю «+».

И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !

Т.е., вопреки «Выводу», и в этом Случае «-» является не нечетным, а четным числом, что возможно (из (18-)) при -четном.

Однако, если - четное, то (16-) и (17-)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию (в Случае «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

Вывод. Следовательно, уравнение (1) в данном Условии 1(начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Примечание.

Осталось рассмотреть еще 14 случаев, когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом - во 2-ой части данного Утверждения 1.

********

Т.к. уравнение (15) симметрично для с и b (для уравнения (15) они равнозначны), то с и b могут обмениваться не только знаками «+» и «-», но и своими выражениями (C и В). Это свойство назовем «новым свойством ». Поэтому аналогичны вышерассмотренному и случаи («Новые» случаи «+» и «-»), когда опять же перед теми же скобками стоят одинаковые знаки.

Условие 2 (начало)

с = B

b = С

n = N

«Новые» случаи «+» и «-».

(16ґ±) c В

(17ґ±) bС

(18±) =± N

(19±) =±К

И в этом случае сумма пропорциональна 4, откуда следует, (учитывая (13) в «Выводе» (стр.5)), !

Т.е., вопреки «Выводу», и в этих «Новых» случаях «+» и «-» является не нечетным, а четным числом, что возможно(из (18±)) при -четном.

Однако, если - четное, то (в ((16ґ±) и ((17ґ±)) являются четными, т.е. в уравнениях (2) и (1) числа - четные, а потому не являются попарно взаимно простыми целыми числами.

Мы пришли к противоречию (в «Новых» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

Вывод. Следовательно, это уравнение (1) в данном Условии 2 (начало) не имеет решений в целых попарно взаимно простых отличных от нуля числах.

*******

Примечание

Осталось рассмотреть еще 14 случаев (пояснение ниже), рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы). Но об этом во 2-ой части данного Утверждения 1.

********

Уравнение (15) симметрично и для n и для (для уравнения 15 они равнозначны), которые тоже могут меняться своими выражениями (N и К). Это свойство назовем «похожим свойством n и ». А это означает, что нам придется рассмотреть еще 16 «похожих» случаев (с 1-го по 14 и случаи «+» и «-», в которых n и меняются своими выражениями (N и К )).

Условие 3

c = C

b = B

n = К

N

« Похожие» случаи «+» и «-».

(16±) с = ± С = ± ()

(17±) b = ± В =± ()

(18ґ±) n = ± К = ± ()

(19ґ±) = ± N= ± ()

Согласно одному из Выводов (формула (14)) (явно) при . Но это возможно, глядя на (19ґ±) = ±N= ±() только при t- четном, при которых в (16±) и (17±) c и b - четные, чего не должно быть.

Мы пришли к противоречию (в «Похожих» случаях «+» и «-») с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

В остальных 14 «похожих» случаях, где опять же = ± N= ± ( ) и перед С, В, N, К стоят всевозможные знаки (плюсы и минусы), рассуждая аналогичным способом (и при этом не затрагивая «новые свойства » (пояснение следует)), мы придем к прежнему результату: c и b - четные, чего не должно быть.

Это значит, что мы опять придем к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Вывод. Следовательно, это уравнение (1) в данном Условии 3 не имеет решений в целых попарно взаимно простых отличных от нуля числах.

********

Пояснение (почему не надо в Условии 3 затрагивать «новые свойства »).

Запишем Условия (1, …, 3).

Условие 1 Условие 2 Условие 3 Условие 2+3

с = С с = B c = C c = B

b = B b = С b = B => b = C

n = N n = N n = К n = К

Если теперь поменять обозначения между собой в Условии 2+3 с на b, а b на c

в верхних двух строчках и n на , а на n в нижних двух строчках, то вернемся снова к обозначениям в Условии 1, которое во 2-й части «Утверждения 1» нами будет исследовано до конца:

Условие 2+3 Условие 1

c = B b = B с = С

b = C => с = С => b = B

n = К n = N

n = N

Вывод.

1. Таким образом, в вышерассмотренных Условиях 1 (начало), 2 (начало) и 3,

Уравнение (1) (, - натуральные числа, где при - натуральном) не имеет решений в отличных от нуля попарно взаимно простых целых числах , и таких, чтобы - было четным, и - нечетными целыми числами.

2. 1-я часть «Утверждения 1» (для Условий 1(начало), 2 (начало) и 3) доказана.

*********

Часть вторая (Утверждения1)

Возможны случаи: либо , либо .

(Об «Исключении» из общего правила)

Доказательство

Условие 1 (продолжение).

Всего случаев 16. Два из них рассмотрели в 1-й части Утверждения 1 (Случаи «-» и «+»).

Осталось рассмотреть еще 14 случаев, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки.

Пояснение.

Случаев всего 14, когда перед С, В, N и К в решениях уравнения (15) стоят разные знаки и число их равно числу Р перестановок из m = 4 элементов (c, b, n и ) по n = 1; 2; 3 элементов (плюсов (+) перед С, В, N и К) в каждом (по n = 0; 4 элементов ( Р = 1+1 = 2 ) мы уже рассмотрели - это 2 случая: Случаи «-» и «+» соответственно):

********

Случай 1.

(16)

(17?)

(18)

(19)

Тогда сумма имеет вид:

Учитывая (14) и (19), можно получить разность :

=> .

Выразим из (25) и (26) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

, , а их сумма .

Т.к. из (8) , то => .

Из (19) с учетом (29) выразим :

, т.е. .

Т.о., , , т.е.

,

выражения которых, с учетом (33), полностью совпадают с (9) и (10).

Теперь, с учетом (17?) и (18), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).

Теперь, учитывая (32), получим значение для b:

, т.к. из (29) вытекает .

Итак, .

Учитывая (35), получим => .

Теперь, с учетом (38),можно получить окончательное выражение для с (из (34)):

, т.е. .

Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19), в конечном счете имеет следующие решения:

, ,

, ,

где - взаимно простые нечетные целые числа.

*******

Случай 2

Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39), (37), (38) и (33), т.е.

, ,

, ,

где - взаимно простые нечетные целые числа.

*******

Случай 3

(16)

(17?)

(18)

(19?).

Тогда сумма имеет вид:

Учитывая (14) и (19?), можно получить разность :

- => (26?).

Выразим из (25) и (26?) :

=>

=> .

По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .

Т.о., имеют вид:

(30?), (31?), а их сумма .

Т.к. из (8) , то => .

Из (19ґ) с учетом (29) выразим :

, т.е. (33ґ).

Т.о., , ,

где ,

т.е. (34ґ), (35ґ), выражения которых, с учетом (33ґ), полностью совпадают с (9) и (10).

Теперь, с учетом (17?) и (18), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).

Теперь, учитывая (32), получим значение для b:

, т.к. из (29) вытекает .

Итак, .

Учитывая (35ґ), получим => ().

Теперь, с учетом (), можно получить окончательное выражение для с (из (34ґ)):

, т.е. (39ґґ).

Таким образом, уравнение (15), решениями которого являются (16), (17?), (18) и (19ґ), в конечном счете имеет следующие решения:

(39ґґ), (38ґґ), где - взаимно простые нечетные

, (33ґ), целые числа.

********

Случай 4

Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (39ґґ), (37), (38ґґ) и (33ґ), т.е.

(39ґґґ), (38ґґґ), (37ґ), (33),

где - взаимно простые нечетные целые числа.

*******

Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (15).

Ранее мы обозначили правые части уравнений (16),…, (19) буквами С, В, N, К, т.е

= С

= В

= N

= К

Тогда эти первые 4 случая следующие:

1. (16) 2. (16ґ) (39ґ)

(17ґ) (37) (17) (37ґ)

(18) (18ґ) (38ґ)

(19) (33) (19ґ) (33ґ)

3. (16) (39ґґ) 4. (16ґ) (39ґґґ)

(17ґ) (37) (17) (37ґ)

(18) (38ґґ) (18ґ) (38ґґґ)

(19ґ) (33ґ) (19) (33)

*********

Рассмотрим еще 10 случаев.

5. с = С 6. с = - С 7. c = C 8. c = - C

b = - B b = B b = - B b = B

n= - N n = N n = - N n = N

9. с = С. 10. с = -С 11. с = С 12. с = -С

b = B b = -B b = B b = -B

n =- N n = N n = N n =- N

13. с = С 14. с = -С

b = B b =- B

n =- N n = N

*******

Итак, рассмотрим случай 5.

Случай 5

(16)

(17ґ)

(18ґ)

(19).

Тогда сумма имеет вид:

Учитывая (14) и (19), можно получить разность :

=> .

Выразим из (25) и (26) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

, , а их сумма .

Т.к. из (8) , то => .

Из (19) с учетом (29) выразим :

, т.е. .

Т.о., , , т.е.

,

выражения которых, с учетом (33), полностью совпадают с (9) и (10).

Теперь, с учетом (17?) и (18ґ), найдем разность :

т.к. , т.е. (36ґ).

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).

Теперь, учитывая (32), найдем разность (b-n)-n:

где .

Т.к. b + c =2n, то b-2n = b - (b + c) = - c = -1 => c = 1 (40).

Учитывая (34), получим => (38ґ).

Теперь, с учетом (38ґ), можно получить окончательное выражение для b (из (35)):

, т.е. (41).

Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19), в конечном счете, имеет следующие решения:

(41), , где - взаимно простые нечетные целые (40), (38ґ), числа

*******

Случай 6

Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17'), (18ґ) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41), (38ґґ) и (33), т.е.

(40ґ), (38),

(41ґ), (33ґ), где - взаимно простые целые нечетные числа.

*******

Случай7

(16)

(17ґ)

(18ґ)

(19ґ)

Тогда сумма имеет вид:

Учитывая (14) и (19ґ), можно получить разность :

=> (26ґ).

Выразим из (25) и (26ґ) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

(30ґ), (31ґ), а их сумма .

Т.к. из (8) , то => .

Из (19ґ), с учетом (29), выразим :

, т.е. (33ґ).

Т.о., , , т.е.

(34ґ),

(35ґ),

выражения которых, с учетом (33), полностью совпадают с (9) и (10).

Теперь, с учетом (17?) и (18ґ), найдем разность :

т.к. , т.е. (36ґ).

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).

Теперь, учитывая (32), найдем разность (b-n)-n:

где .

Т.к. b+c=2n, то b-2n = b-(b+c) = -c = -1 => c = 1 (40).

Учитывая (34ґ), получим => (38ґґґ).

Теперь, с учетом (38ґґґ), можно получить окончательное выражение для b (из (35ґ)):

, т.е. (41ґґ).

Таким образом, уравнение (15), решениями которого являются (16), (17?), (18ґ) и (19ґ), в конечном счете, имеет следующие решения:

(40), (38ґґґ),

(41ґґ), (33ґ), где - взаимно простые нечетные целые числа.

*******

Случай 8

Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17?), (18ґ) и (19ґ), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41ґ), (38ґґґ) и (33ґ), т.е.

(40ґ), (38ґґ),

, (33), где - взаимно простые целые нечетные числа.

*******

Вывод

Итак, после анализа полученных решений в Случаях 1,…, 8, уравнение (15) , где c и b - взаимно простые целые нечетные числа, имеет решение в следующих целых числах:

а) ; ; ; ;

б) ; ; ; .

А это в свою очередь означает, что и уравнение при вышеназванных условиях (смотри Утверждение1) может иметь целые решения либо при , либо при .

Случай 9

(16)

(17)

(18ґ)

(19)

Из (16) и (17) имеем:

Учитывая (14) и (19), можно получить разность другим способом:

=> .

Следовательно,

==> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*********

Случай 10

(16ґ)

(17ґ)

(18)

(19ґ),

т.е. по сравнению с предыдущим случаем 9 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 9.

Действительно, из (16ґ) и (17ґ) имеем:

Учитывая (14) и (19ґ), можно получить разность другим способом:

- => .

Следовательно, -=-=> 2t = 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = 2r (32ґ) => в (16ґ) и (17ґ) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Случай 11

(16)

(17)

(18)

(19ґ)

Из (16) и (17) имеем:

Учитывая (14) и (19ґ), можно получить разность другим способом:

- => .

Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

Случай 12

(16ґ)

(17ґ)

(18ґ)

(19),

т.е. по сравнению с предыдущим случаем 11 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 11.

Действительно, из (16ґ) и (17ґ) имеем:

Учитывая (14) и (19), можно получить разность другим способом:

=> .

Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

*******

Случай 13

(16)

(17)

(18ґ)

(19ґ)

Из (16) и (17) имеем:

Учитывая (14) и (19ґ), можно получить разность другим способом:

- => .

Следовательно, =-=> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

********

Случай 14

(16ґ)

(17ґ)

(18)

(19),

т.е. по сравнению с предыдущим случаем 13 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 13.

Действительно, из (16ґ) и (17ґ) имеем:

Учитывая (14) и (19), можно получить разность другим способом:

=> .

Следовательно, -==> 2t = - 4r ( ? 0, т.к. в (26ґґ) с ? b) => t = -2r (32ґ) => в (16) и (17) c и b - четные, чего не должно быть.

Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.

***********

Вывод.

1. Таким образом, случаи 9,…, 14 новых возможных решений уравнения (15) не выявили.

2. Условие 1 (продолжение) нами полностью рассмотрено.

**********

Условие 2 (продолжение).

Ранее мы отмечали, что уравнение (15) симметрично для с и b, поэтому с и b могут меняться своими выражениями (C и В). Это свойство нами было названо «новым свойством ».

В 1-й части Утверждения 1 мы рассмотрели два «Новых» случая «+» и «-».

Осталось исследовать еще 14 случаев, рассматривающих «новые свойства », когда перед С, В, N, К стоят всевозможные знаки (плюсы и минусы).

********

«Новый» случай 15

(Отличающийся «новым свойством » от случая 1: с = С, b= , n= N, K)

с = - В (16-B),

b= С (17+C),

n= N (18),

K (19) - это общие решения уравнения (15), окончательным видом которых являются (это мы покажем далее) окончательные решения уравнения (15) в случае 8, т.е.

(40ґ), (38ґґ),

, (33),

где - взаимно простые нечетные целые числа.

Доказательство

Сумма имеет вид:

Учитывая (14) и (19), можно получить разность :

=> .

Выразим из (25) и (26) :

=>

=> .

По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .

Т.о., имеют вид:

, , а их сумма .

Т.к. из (8) , то => .

Из (19) с учетом (29) выразим :

, т.е. .

Т.о., , , т.е.

, выражения которых, с учетом (33), полностью совпадают с (9) и (10).

Теперь найдем сумму с:

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).

Теперь, учитывая (32), получим значение для с:

,

т.к. из (29) вытекает .

Итак, .

Учитывая (34), получим => .

Теперь, с учетом (38ґґ), можно получить окончательное выражение для b (из (35)):

, т.е. .

Таким образом, уравнение (15), решениями которого являются (16-B), (17+C), (18) и (19), в конечном счете имеет следующие решения (являющиеся окончательными решениями в случае 8):

, где - взаимно простые нечетные целые числа, ч.т.д.

*********

Примечание

То, что окончательные решения в случаях 15 и 8 одинаковые, вытекает и из следующего соображения, которое используем в дальнейшем (для быстроты суждений).

Случай 15. Случай 8

с = - В (16-B), с = - С (16ґ),

b= С (17+C), b= В (17),

n= N (18), n= N (18),

K (19), K (19).

У этих случаев одинаковые знаки в правых частях с и b, но разные выражения (С и В), в остальном эти случаи похожи.

Соображение

Если в этих случаях решения совпадают, значит, у них надо выявить что-то общее. Этим общим свойством для них являются произведение и разность с и b.

«Общие свойства для с и b»:

сb= -СВ, с - b= -С -В, с - b=

Воспользуемся свойствами корней квадратного уравнения (теоремой Виета). Имеем:

с(-b)= СВ, с+(- b)= -С -В = .

Отсюда получаем квадратное уравнение

- 2К+ С В = 0 => X1,2 = К ,

где, например, Х1 = -b, а Х2 = с, то есть

Х1 = -b = К +=+= += + = -В => b = В,

где на основании и Х1 = - b= -

Х2= с = К-= -= -= - = -С => с = - С,

где на основании (40ґ) и Х2 = Таким образом, мы получили случай 8:

Случай 8

с = - С (16ґ),

b= В (17),

n= N (18),

K (19),

где

, а - взаимно простые нечетные целые числа.

Теперь обозначим Х1 = с, а Х2 = - b. Тогда получим:

Х1 = с = К+=+= += + = -В => с = -В,

где на основании (40ґ) и Х1 = с = -1.

Х2 = - b = К-= -= -= - = -С => - b= -С => b = С,

где на основании и Х2 = -

Таким образом, мы получили случай 15:

Случай 15

с = -В (16-B),

b= С (17+C),

n= N (18),

K (19),

где

, а - взаимно простые нечетные целые числа.

Таким образом, одно и то же квадратное уравнение - + С В = 0, дает одинаковые решения X1,2 = К (X1(2) =- Х2(1) = -1) и для Случая 8 и для Случая 15, значит и одинаковые их окончательные решения:

, а - взаимно простые нечетные целые числа.

В этом мы непосредственно и убедились.

Следовательно, «Общие свойства для с и b» (сb= -СВ, с - b= -С -В, с - b= 2К) действительно определяют Случаи 15 и 8, имеющие одинаковые знаки у с и b и отличающиеся друг от друга у них выражениями (С и В), а, значит, и одинаковый вид их окончательных решений. Этой похожестью с и b, их отличием друг от друга и вышерассмотренными «Общими свойствами для с и b» мы воспользуемся при рассмотрении последующих случаев.

*********

Вывод (критерий одинаковости окончательных решений).

Если в каких-либо двух случаях наблюдаются вышерассмотренные «Общие свойства для с и b» ( сb = constґ, с - b = constґґ, с - b = constґґґ ), то в этих случаях окончательные решения имеют одинаковый вид.


Подобные документы

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат [29,1 K], добавлен 19.11.2010

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.

    статья [20,8 K], добавлен 29.08.2004

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат [13,2 K], добавлен 01.12.2010

  • Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.

    дипломная работа [351,4 K], добавлен 26.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.