Математическое ожидание и его свойства
Рассмотрение в теории вероятностей связи между средним арифметическим и математическим ожиданием. Основные формулы математического ожидания дискретного распределения, целочисленной величины, абсолютно непрерывного распределения и случайного вектора.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 01.11.2013 |
Размер файла | 55,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Теория вероятностей. Коэффициенты использования рабочего времени. Закон распределения случайной величины. Функция плотности. Математическое ожидание. Закон распределения с математическим ожиданием. Статистика. Доверительный интервал. Выборочная средняя.
контрольная работа [178,3 K], добавлен 24.11.2008Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
контрольная работа [36,5 K], добавлен 14.11.2010Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.
контрольная работа [91,7 K], добавлен 15.11.2011Функция распределения вероятностей двух случайных величин. Функция и плотность распределения вероятностей случайного вектора. Многомерное нормальное распределение. Коэффициент корреляции. Распределение вероятностей функции одной случайной величины.
реферат [241,8 K], добавлен 03.12.2007Определение дифференциальной функции распределения f(x)=F'(x) и математического ожидания случайной величины Х. Применение локальной и интегральной теоремы Лапласа. Составление уравнения прямой линии регрессии. Определение оптимального плана перевозок.
контрольная работа [149,6 K], добавлен 12.11.2012Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.
контрольная работа [33,8 K], добавлен 13.12.2010Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.
лабораторная работа [52,3 K], добавлен 19.08.2002Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.
контрольная работа [87,2 K], добавлен 29.01.2014Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.
лекция [285,3 K], добавлен 17.12.2010