Промышленная технология парентеральных лекарственных форм

Характеристика парентеральных лекарственных форм, их преимущества и недостатки. Получение воды для инъекций в промышленных условиях. Технологические стадии приготовления растворов. Использование консервантов в производстве парентеральных препаратов.

Рубрика Медицина
Вид дипломная работа
Язык русский
Дата добавления 21.08.2011
Размер файла 95,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Вступление
  • Глава 1. Характеристика парентеральных лекарственных форм
    • 1.1 Классификация парентеральных лекарственных форм и требования к ним
    • 1.2 Преимущества и недостатки парентеральных лекарственных форм
    • 1.3 Создание условий для производства парентеральных лекарственных форм
  • Глава 2. Водоподготовка
    • 2.1 Получение воды для инъекций в промышленных условиях
    • 2.2 Сведения о пирогенности воды для инъекций
    • 2.3 Методы обнаружения пирогенов
    • 2.4 Методы удаления пирогенных веществ
  • Глава 3. Приготовление растворов
    • 3.1 Технологические стадии приготовления растворов
    • 3.2 Изотонирование растворов
    • 3.3 Стабилизация растворов
    • 3.4 Использование консервантов в производстве препаратов парентерального назначения
    • 3.5 Фильтрация растворов
    • 3.6 Стерилизация растворов
    • 3.7 Контроль качества
  • Раздел 4. Практическая часть
    • 4.1 Характеристика препарата
    • 4.2 Блок-схема производства
    • 4.3 Материальный баланс
    • 4.4 Рабочая пропись
  • Выводы
  • Список использованной литературы

Вступление

Лекарственные средства для парентерального применения -- это стерильные препараты, предназначенные для введения путем инъекций, инфузий или имплантаций в организм человека или животного. К ним относятся растворы, эмульсии, суспензии, порошки и таблетки для получения растворов и имплантации, лиофилизированные препараты, вводимые в организм парентерально (подкожно, внутримышечно, внутривенно, внутриартериально, в различные полости).

Специальные стеклянные сосуды-ампулы, рассчитанные на разовый прием помещенного в них стерильного раствора лекарственного вещества, были предложены петербургским фармацевтом проф. А. В. Пелем в 1885 г. Независимо друг от друга и почти одновременно сведения об ампулах содержали также опубликованные в фармацевтических журналах сообщения немецких аптекарей Фридлендера, Марпманна, Лютце, австрийца Бернатуика и француза Станислава Лимузина. В то время еще не существовало развитой фармацевтической промышленности, поэтому аптекарь был вынужден самостоятельно изготавливать ампулы или обращаться к стеклодуву. В дальнейшем в связи с расширением номенклатуры инъекционных растворов, увеличением потребности в них, а также с усложнением прописей производство ампул было организовано на фармацевтических фабриках и заводах

В настоящее время среди всех готовых лекарственных средств, выпускаемых отечественной фармацевтической промышленностью, на долю парентеральных препаратов приходится около 30%. Инъекционные лекарственные формы занимают значительное место в номенклатуре лекарственных средств. На инъекционные препараты в различных фармакопеях мира приходится от 10% до 15% статей.

Глава 1. Характеристика парентеральных лекарственных форм

1.1 Классификация парентеральных лекарственных форм и требования к ним

Инъекции (впрыскивания) -- это обособленная группа жидких лекарственных форм, вводимых в организм при помощи специальных устройств с нарушением целостности кожных или слизистых покровов.

Инфузии (вливания) -- стерильные лекарственные формы, вводимые в организм паретретально в количествах более 100 мл капельно или струйно.

Инъекционные растворы -- сравнительно молодая лекарственная форма. Впервые подкожно впрыскивания лекарств были осуществлены в начале 1851 г. русским врачом Владикавказского военного госпиталя Лазаревым.

В зависимости от способа введения инъекции подразделяются на: подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, внутрисуставные. В последнее время применяются менее болезненные методы безигольного введения инъекционных растворов в виде тончайшей (около 0,1--0,12 мм диаметром) струи под высоким давлением, которая выдается из отверстия специального инъектора со скоростью 300 м/с и проникает через кожный покров на глубину 3 см. С этой целью применяются ручные инъекторы типа «Пчелка», «Нynоsрrау», «Jetinjection».

Парентеральное применение препаратов предполагает нарушение кожного покрова, что связано с возможным инфицированием патогенными микроорганизмами и введением механических, включений. Поэтому стерильное производство по сравнению с другими отраслями промышленности имеет специфические особенности, которые диктуются требованиями к инъекционным лекарственным формам. Главные из них -- отсутствие механических примесей, стерильность, стабильность, апирогенность, изотоничность, изоионичность, изогидричность (последние три требования предъявляются к отдельным инъекционным растворам, что указывается в соответствующей нормативно-технической документации (НТД)).

Уровень требований Государственной фармакопеи СССР (ГФ XI) к лекарственным средствам для парентерального применения Уступает уровню требований ведущих фармакопей мира, поэтому Для гармонизации национальной нормативно-технической Документации (НТД) с документацией Европейского Сообщества в 2001 году разработана статья «Лекарственные средства для парентерального применения» (Parenteralia) Государственной Фармакопеи Украины.

Согласно данной статье лекарственные средства для Парентерального применения классифицируются следующим образом:

· Инъекционные лекарственные средства;

· Внутривенные инфузионные лекарственные средства;

· Концентраты для инъекционных или внутривенных инфузионных лекарственных средств;

· Порошки для инъекционных или внутривенных инфузионных лекарственных средств;

· Имплантанты.

Требования этой статьи не распространяются на препараты, изготовленные из человеческой крови, иммунологические и радиофармацевтические препараты, имплантируемые протезы.

Инъекционные лекарственные средства -- это стерильные растворы, эмульсии или суспензии. Растворы для инъекций должны быть прозрачными и практически свободными от частиц. Эмульсии для инъекций не должны обнаруживать признаков расслоения. В суспензиях для инъекций может наблюдаться осадок, который должен быстро диспергироваться при взбалтывании, образуя суспензию. Образовавшаяся суспензия должна быть достаточно стабильной для того, чтобы обеспечить необходимую дозу при введении.

Растворители, исходные и вспомогательные вещества, применяемые для приготовления лекарственных форм для инъекций, должны быть разрешенными к медицинскому применению и соответствовать требованиям нормативно-технической документации.

Внутривенные инфузионные лекарственные средства -- это стерильные водные растворы или эмульсии с водой в качестве дисперсионной среды; должны быть свободны от пирогенов и обычно изотоничны крови. Предназначаются для применения в больших дозах, поэтому не должны содержать никаких антимикробных консервантов.

Концентраты для инъекционных или внутривенных инфузионных лекарственных средств -- представляют собой стерильные растворы, предназначенные для инъекций или инфузий после разведения. Концентраты разводят до указанного объема соответствующей жидкостью перед применением. После разведения полученный раствор должен соответствовать требованиям, предъявляемым к инъекционным или инфузионным лекарственным средствам.

Порошки для инъёкционных или внутривенных инфузионных лекарственных средств -- представляют собой твердые стерильные вещества, помещенные в контейнер. При встряхивании с указанным объемом соответствующей стерильной жидкости они быстро образуют или прозрачный, свободный от частиц раствор, или однородную суспензию. После растворения или суспендирования они должны соответствовать требованиям, предъявляемым к инъекционным или инфузионным лекарственным средствам.

Имплантанты - представляют собой стерильные твердые лекарственные средства, имеющие подходящие для парентеральной имплантации размеры и форму, и высвобождающие действующие вещества в течение длительного периода времени. Они должны быть упакованы в индивидуальные стерильные контейнеры.

1.2 Преимущества и недостатки парентеральных лекарственных форм

Парентеральный путь введения в организм лекарств имеет ряд преимуществ:

· быстрое действие и полная биологическая доступность лекарственного вещества;

· точность и удобство дозирования;

· возможность введения лекарственного вещества больному, находящемуся в бессознательном состоянии, или когда лекарство нельзя вводить через рот;

· отсутствие влияния серетов ЖКТ и ферментов печени, что имеет место при внутреннем употреблении лекарств;

· возможность создания больших запасов стерильных растворов, что облегчает и ускоряет их отпуск из аптек.

Наряду с преимуществами инъекционный путь введения имеет и некоторые недостатки:

· при введении жидкостей через поврежденный покров кожи в кровь легко могут попасть патогенные микроорганизмы;

· вместе с раствором для инъекций в организм может быть введен воздух, вызывающий эмболию сосудов или расстройство сердечной деятельности;

· даже незначительные количества посторонних примесей могут оказать вредное влияние на организм больного;

· психоэмоциональный аспект, связанный с болезненностью инъекционного пути введения;

· инъекции лекарств могут осуществляться только квалифицированными специалистами.

1.3 Создание условий для производства парентеральных лекарственных форм

Для создания оптимальных условий, обеспечивающих выпуск Высококачественных лекарственных форм, в последние годы цдзработаны требования к производству стерильной продукции, которые изложены в GMP ВОЗ "Sterile pharmaceutical products" (1992), GMP Европейского Сообщества (ЕС) "Manufacture of sterile mйdicinal products" (1997), MB 64У-1-97 «Производство лекарственных средств. Надлежащие правила и контроль качества», ГНД 01.001.98 GMP "Належна виробнича практика GMP" (1998), "Надлежащая производственная практика лекарственных средств» (1999), "Надлежащая производственная практика лекарственных средств» (2001), Настанова 42-01-2001.

Одним из условий производства качественной стерильной продукции и торговли ею на отечественном и зарубежных фармацевтических рынках является обеспечение качества препаратов за счет выполнения, в первую очередь, принципов и правил надлежащей производственной практики (GMP - Good ttanufacturing practice).

Надлежащая производственная практика (НПП) - это часть системы обеспечения качества, которая гарантирует, что продукция производится и контролируется по стандартам качества, требуемым торговой лицензией и соответствует ее назначению.

Для обеспечения всех показателей качества готовой стерильной продукции должны выполняться специальные требования, предъявляемые к проведению технологического процесса, чистоте производственных помещений, работе технологического оборудования, вентиляции и чистоте воздуха, системе подготовки основного сырья и вспомогательных материалов с целью свести к минимуму риск контаминации микроорганизмами, частицами и пирогенными веществами. Предъявляются также определенные требования к персоналу и производственной санитарии.

Соблюдение этих правил зависит, в первую очередь, от надлежащей квалификации, образования, уровня практического Опыта и производственной дисциплины всего персонала.

Производство инъекционных растворов осуществляют на Специальных, только для этих целей предназначенных участках. Устройство помещений должно обеспечивать минимум возможности загрязнения готового продукта производства, т. е. минимум мест скопления пыли, подачу воздуха контролируемой чистоты, поддержание повышенного давления. При необходимости в помещении поддерживают определенную температуру и влажность. Такие помещения называют «чистыми».

«Чистым» помещением, или «чистой» комнатой, называется помещение, в котором счетная концентрация аэрозольных частиц и число микроорганизмов в воздухе поддерживается в строго определенных пределах.

Важной характеристикой «чистого» помещения является его класс.

Класс «чистого» помещения характеризуется классификационным числом, определяющим максимально допустимую счетную концентрацию аэрозольных частиц определенного размера в 1 м3 воздуха.

«Чистое» помещение может содержать одну или несколько «чистых» зон. «Чистые» зоны могут быть и вне «чистого» помещения. «Чистые» зоны могут создаваться в локальных объемах: ламинарные шкафы-модули, изоляторы, блоки, укрытия и пр.

В нашей стране в «чистых» помещениях подпор воздуха должен быть равен 4 мм рт. ст., температура 23±2°С, относительная влажность 30--40% .

Влажность и температура могут меняться в зависимости от требований технологического процесса. Однако при влажности выше 50% начинается коррозия металлических деталей, так как гигроскопические частицы поглощают из воздуха столько влаги, что становятся инициаторами коррозии. При низкой относительной влажности на диэлектрических металлах может накапливаться статическое электричество, а следовательно, могут удерживаться частицы пыли.

Для получения воздуха с требуемыми характеристиками должны быть использованы способы, прошедшие валидацию, внесенные в технологический регламент и разрешенные в установленном порядке уполномоченным государственным органом.

Производство стерильных лекарственных средств должно выполняться в «чистых» производственных зонах, в которые доступ персонала и/или оборудования и материалов должен происходить через воздушные шлюзы. В них должна поддерживаться надлежащая степень чистоты, регламентируемая правилами GМР, а поступающий вентиляционный воздух должен проходить очистку с использованием фильтров соответствующей эффективности.

Различные операции по подготовке компонентов, приготовлению продукта и наполнению сосудов должны выполняться в раздельных зонах внутри «чистого» помещения.

Оснащение производства системами с ламинарным потоком и подача в помещение чистого и стерильного воздуха не решают проблемы чистого воздуха, так как работающий в помещении персонал также является активным источником загрязнения. Поэтому в «чистых» производственных помещениях во время работы должно находиться минимальное количество рабочих, предусмотренное соответствующими инструкциями.

Персонал, входящий в производственное помещение, должен быть одет в специальную одежду, соответствующую выполняемым им производственным операциям. Технологическая одежда персонала должна соответствовать классу чистоты той зоны, в которой он работает, и выполнять свое основное назначение -- максимально защищать продукт производства от частиц, выделяемых человеком.

Производство стерильных лекарственных средств должно осуществляться по методикам, четко изложенным в технологических регламентах и производственных инструкциях, с учетом принципов и правил надлежащей производственной практики, что необходимо для получения готовой продукции требуемого качества в соответствии с регистрационной и лицензионной документацией.

Не допускается производить различные лекарственные средства одновременно или последовательно в одном и том же помещении за исключением тех случаев, когда не существует риска перекрестной контаминации, а также смешивания и перепутывания разных видов исходного сырья, полупродуктов, материалов, промежуточной и готовой продукции.

Контроль в процессе производства, осуществляемый в производственных помещениях, не должен оказывать отрицательного влияния на технологический процесс и качество продукции.

На всех стадиях технологического процесса, включая стадии, предшествующие стерилизации, необходимо осуществлять мероприятия, сводящие к минимуму микробную контаминацию.

После стадий (операций) окончательной очистки первичной упаковки и оборудования при дальнейшем ведении технологического процесса они должны использоваться таким образом, чтобы не происходила их повторная контаминация.

Эффективность любых новых методик, замены оборудования и способов ведения технологического процессу должна быть подтверждена при валидации, которую необходимо регулярно повторять согласно разработанным графикам.

В создании условий, предотвращающих возможность микробного обсеменения инъекционного раствора, важную роль играет оборудование, реализующее технологические процессы. Это определяет ряд требований к конструкции, выбору форм, материалов и покрытий деталей технологического оборудования.

Производственное оборудование не должно отрицательно влиять на качество продукции. Части или поверхности оборудования, соприкасающиеся с продукцией, должны быть изготовлены из материалов, которые не вступают с ней в реакцию, не обладают абсорбционными свойствами и не выделяют какие-либо вещества в такой степени, чтобы это могло повлиять на качество продукции.

Одним из путей решения этих задач является применение современных автоматических линий ампулирования инъекционных препаратов. Такие поточно-автоматические линии имеют очевидные преимущества перед оборудованием, предназначенным для выполнения только одной какой-либо операции. Использование автоматических линий позволяет практически полностью исключить физический труд человека путем применения приборов, автоматов и машин, объединенных автоматическим средством транспортирования Предметов труда и автоматизации производственного процесса.

Передача исходного сырья и материалов внутрь и наружу производственных зон является одним из наиболее серьезных источников контаминации. Поэтому конструкции передаточных устройств могут варьировать от устройств с одинарной или двойной Дверью до полностью герметизированных систем с зоной стерилизации их (стерилизующий туннель).

Каждое предприятие-производитель должно иметь независимую службу контроля качества и контрольную (испытательную) лабораторию, штат и оснащение которой позволяют проводить все требуемые испытания. Такая лаборатория должна быть отделена от производственных помещений и других лабораторий (биологической, микробиологической и т д.).

Во время технологического процесса производства инъекционных растворов обязательно проводят промежуточный (постадийный) контроль качества, т.е. после каждой технологической стадии (операции) проводится бракераж ампул, флаконов, гибких контейнеров и др., не отвечающих определенным требованиям. Так, после растворения (изотонизации, стабилизации и т.д.) лекарственного вещества, контролируется качественный и количественный состав, рН раствора, плотность и др.; после операции наполнения -- проверяется выборочно объем наполнения сосудов и т.п.

Поступившее сырье, материалы, полупродукты, а также изготовленная промежуточная или готовая продукция сразу же после поступления или окончания технологического процесса до принятия решения о возможности их использования должны находиться в карантине. Готовая продукция не допускается к реализации до тех пор, пока ее качество не будет признано удовлетворительным.

Жидкие лекарственные средства для парентерального применения обычно контролируют по следующим показателям качества: описание, идентификация, прозрачность, цветность, pH, сопутствующие примеси, извлекаемый объем, стерильность, пирогены, аномальная токсичность, механические включения, количественное определение действующих веществ, антимикробных консервантов и органических растворителей.

Для жидких лекарственных средств для парентерального применения в виде вязких жидкостей дополнительно контролируют плотность.

Для жидких лекарственных средств для парентерального применения в виде суспензии дополнительно контролируют размер частиц, однородность содержания (в случае однодозовых суспензий), устойчивость суспензий.

В порошках для инъекций или внутривенных инфузий дополнительно контролируют: время растворения, потеря в массе при высушивании, однородность содержания или однородность массы.

Глава 2. Водоподготовка

2.1 Получение воды для инъекций в промышленных условиях

Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqua pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна быть стерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ XI издания, с. 187--192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ XI издания, с. 183--185.

В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводительных корпусных аппаратов, термокомпрессионных дистилляторов различных конструкций и установок обратного осмоса.

К колонным многокамерным аппаратам относятся прежде всего многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/ч.

Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенность колонных аппаратов в том, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий -- в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из 2-го и 3-го корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.

Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистиллята является применение дистилляционных аппаратов соответствующих конструкций, в которых исключена возможность переброса капельно-жидкой фазы через конденсатор в сборник. Это достигается устройством специальных ловушек и отражателей, высоким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испарителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, так как чрезмерный нагрев ведет к бурному кипению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следовательно, выделение капелек воды в паровую фазу.

На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора «Маsсаrini» --производительность этого аппарата 1500 л/ч. Он снабжен прибором контроля чистоты воды, бактерицидными лампами, воздушными фильтрами, прибором для удаления пирогенных веществ, а также установкой - двойной дистилляции воды производительностью 3000 л/ч.

Наиболее широко распространенным до последних лет методом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является серьезным недостатком. Среди других недостатков следует отметить громоздкость оборудования и большую занимаемую им площадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.

Этих недостатков лишены новые методы мембранного разделения, все больше внедряемые в производство. Они протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии, сопоставимых с минимальной теоретически определяемой энергией разделения.

Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений.

Для получения воды для инъекций в практическом отношении представляют интерес следующие аппараты.

С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производительность ее по питающей воде 500 л/ч, получаемая после этой установки высокоочищенная вода, свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.

Установка (УВВ) включает блоки пред фильтрации, обратного осмоса и финишной очистки.

Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.

Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока, один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембраны и содержащий повышенное количество солей (концентрат) отводится из установки. Для обеспечения работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1 л высокоочищенной воды необходимо израсходовать приблизительно 3 л воды водопроводной. При этом скорость слива достаточно высока, что устраняет вредное влияние концентрированной поляризации на работу установки.

В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий. Качество воды контролируется по удельному сопротивлению с помощью кондуктометра.

После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последовательно соединенных фильтров -- катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов. Окончательная доочистка воды проводится в двух ультрафильтрационных аппаратах с полыми волокнами АР-2,0, предназначенных для отделения органических микропримесей (коллоидах частиц и макромолекул).

Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность -- 720 л/ч, вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем -- через смешанный слой ионитов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарственных форм, а концентрат используют как техническую воду или повторно отправляют на очистку.

Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически целесообразными и перспективными.

2.2 Сведения о пирогенности воды для инъекций

При парентеральном, особенно при внутрисосудистом введении препаратов, иногда наблюдается быстрое повышение температуры тела до 40°С, что сопровождается учащением пульса, ознобом, потовыделением, тошнотой и головной болью. В особо тяжелых случаях возможен смертельный исход, вызванный присутствием в растворе пирогенов -- веществ бактериального происхождения. Пирогенностью обладают живые микроорганизмы и продукты их жизнедеятельности, тела мертвых бактерий, которые могут находиться в растворах после стерилизации. Пирогенные вещества принято разделять на экзогенные (в основном бактериальные) и эндогенные (клеточно-тканевые). Источником эндогенных пирогенов могут быть лейкоциты и белки крови, которые в определенных условиях образуют и выделяют биологически активные вещества с пирогенными свойствами (лейкопирогены).

С химической точки зрения пирогены -- это сложные вещества с высокой молекулярной массой и размером частиц от 50 до 1 мкм, состоящие в основном из липополисахаридов, адсорбированных на белковом носителе. Например, химический состав пирогенного вещества, выделенного из Proteus Vulgaris, состоит из углерода (25,83%), водорода (6,06%), азота (6%), фосфора (0,29%) и золы (8,33%).

Пирогены растворимы в воде, нерастворимы в спирте и ацетоне, устойчивы к воздействию повышенной температуры. Нагревание в автоклаве при 120°С в течение 20 мин приводит к гибели бактерий, но не уничтожает пирогены. Чувствительность пирогенов к высокой температуре различна. Изменение pH водного раствора практически не влияет на термолабильность пирогенов. В сухом виде их полное разложение происходит только при температуре 200°С в течение 30 мин; стерилизация сухим воздухом при 160°С в течение 2 ч не гарантирует полной апирогенности. Повышение температуры позволяет сократить время, необходимое для уничтожения пирогенов. При температуре 600°С достаточно минутного нагревания, при 450°С -- двухминутного, следовательно, освободить от них воду и инъекционные растворы термической стерилизацией практически невозможно.

Пирогенные вещества чувствительны к действию окислителей, например, перекиси водорода или перманганата калия.

Пирогены обладают очень малыми размерами и пррходят через самые плотные фильтры с размерами пор от 0,005 до 0,001 мкм.

Существуют различные методы обнаружения и удаления пирогенов из растворов.

2.3 Методы обнаружения пирогенов

Для практических целей, наряду с методами удаления пирогенных компонентов, большое значение имеют методы их обнаружения:

а) химические;

б) физические;

в) биологические.

Химические методы основаны на проведении определенных цветных реакций.

Физические методы основаны на измерении электропроводности и полярографических максимумов.

Из-за ряда недостатков первых двух методов чаще всего применяют методы биопроб, которые введены в Фармакопеи различных стран мира.

Биологические методы. До настоящего времени основным и официально принятым во всех странах методом испытания лекарственных средств на наличие пирогенных примесей считается метод, основанный на троекратном измерении температуры тела кролика после внутривенного введения исследуемого препарата. Повышение температуры на 0,6°С или более, согласно требованию фармакопей, считается доказательством наличия пирогенов.

Специальные статьи Фармакопей оговаривают условия . проведения этого испытания, поскольку факторы -- химический (корм), физический (изменение температуры окружающей среды), физиологический (возбуждение животных при анальном измерении температуры) -- могут повлиять на результат испытания. И даже при самом строгом соблюдении требований к проведению испытаний невозможно избежать случайных ошибок, связанных с индивидуальной чувствительностью животных к пирогену и препарату, различными климатическими условиями, времени постановки опыта и т. п. Все это может отразиться на показателях температуры, измеренной с точностью до ±0,1°С.

Согласно данным различных Фармакопей доза одного и того же препарата в ряде случаев колеблется в широких пределах. Очень часто при равных или весьма близких дозах препаратов объемы вводимых растворов различаются в 5 раз. Отмечено, что наблюдается большой разрыв между дозами для кроликов и человека. Нередко эти дозы различаются в 100--6000 раз. По мнению ученых, изучавших этот вопрос, тест-доза препарата при испытании пирогенности должна подбираться индивидуально, учитывая его фармакологию, переносимость кроликом, и ориентировочно должна составлять 1/10 максимальной суточной дозы для человека.

Существует вариант условий признания препарата пирогенным либо алирогенным: воду или раствор лекарственного средства считают апирогенным, если сумма максимальных повышений температур у 3 кроликов не превышает 1,2°С, и пирогенным, если она равна или больше 2,2°С. Если сумма повышений температуры у 3 кроликов больше 1,2°С, но меньше 2,2°С, то испытание повторяют на 5 кроликах. Воду или раствор лекарственного средства считают пирогенным, если сумма повышений температуры у 8 кроликов равна или больше 3,8°С, в противном случае -- апирогенным.

В последнее время заметное распространение получает метод испытания лекарственных средств на пирогенность in vitro с использованием лизата амебоцитов краба Лимулюс. Этот метод имеет ряд преимуществ перед фармакопейным: он чувствительнее в 5--10 раз, результат получается быстрее, возможно количественное определение пирогена. Кроме того, с его помощью возможен контроль препаратов, которые нельзя испытать на кроликах. Одним из недостатков этого метода является его специфичность в отношении эндотоксина грамотрицательных бактерий, т. е. опасность не выявить наличие в лекарственных средствах пирогенов другого происхождения.

2.4 Методы удаления пирогенных веществ

Методы депирогенизации подразделяются на:

1. химические;

2. физические;

3. энзиматические.

Химические методы удаления пирогенов. Растворы, содержащие пирогены, нагревают при 100°С в течение 2 ч с добавкой 0,1 моля перекиси водорода. Эффективен способ нагрева растворов при температуре 116°С в течение 20 мин с добавкой 0,04 моля перекиси водорода.

Ряд методов основан на применении раствора перманганата калия. Рекомендуется прибавлять к раствору небольшое количество гипохлорида (щавелевой воды): на 1 л добавляют 0,25 мл раствора гипохлорида натрия с содержанием активного хлора около 0,5%, смесь выдерживают 30 мин. Избыток гипохлорида удаляют с помощью активированного угля (из расчета 15% от объема воды). Для удаления пирогенов предлагается также обрабатывать растворы п-хиноном и антрахиноном, образующих с пирогенами комплексные соединения.

Для уничтожения пирогенных веществ можно использовать подогрев раствора с 0,1Н раствором едкого натра или 0,1Н раствором соляной кислоты (при рН 4,0) в течение 1 ч. Происходит гидролитическое расщепление пирогенов с образованием моносахаридов, не обладающих пирогенными свойствами. Расход кислоты и щелочи при этом очень велик, поэтому данный метод следует назвать неэкономичным.

Из-за возможного взаимодействия компонентов, химический и энзиматический методы мало приемлемы при промышленном изготовлении растворов для инъекций.

Физические методы. Основываются на явлении адсорбции пирогенов активированным углем, каолином, асбестом, целлюлозой и т. п. Количество пирогенных веществ уменьшается после обработки активированным углем путем встряхивания в течение 15 мин, при этом эффективность очистки зависит от природы пирогенных веществ. Гранулированный уголь менее эффективен. Уголь, применяемый для очистки растворов, должен быть тщательно очищен, хорошо промыт водой, не содержать пирогенов и высушен при температуре 250°С в течение 2 ч. Однако обработка растворов активированным углем не всегда приводит к полной депирогенизации. Кроме того, данный метод нельзя применять для очистки растворов лекарственных веществ, легко адсорбируемых углем, например, солей алкалоидов, или легко окисляемых, например аскорбиновой кислоты.

Ряд авторов рекомендуют для очистки от пирогенов использовать ионообменные смолы (например, для аминокислот), считая, что они более эффективны, чем активированный уголь. Депирогенизацию воды можно осуществить путем фильтрования через бактериальный фильтр Зейтца. Размер пор многих бактериальных фильтров такой же, как у фильтра Зейтца, но они не пригодны для удаления пирогенных веществ, поэтому нельзя объяснить эффективность удаления пирогенных веществ только малым диаметром пор. Рекомендуется, чтобы диаметр пор фильтра Зейтца не превышал 2,4 мкм. Фильтр Зейтца задерживает пирогенные вещества из раствора на 99,5%, даже когда они находятся в значительном количестве. Чем меньше концентрация пирогенных веществ в растворе, тем лучше они задерживаются на фильтре.

Обработка раствора активированным углем с последующим фильтрованием через фильтр Зейтца обеспечивает более полное удаление пирогенных веществ.

Для удаления пирогенных веществ из растворов аминокислот, применяемых для внутривенного вливания, предлагается их автоклавирование при температуре 120°С в течение 2--3 ч в атмосфере азота.

Уменьшение пирогенных веществ происходит при термической стерилизации в течение 20 мин при 120°С, а при 140°С в течение 20 мин наступает их инактивация. Полное уничтожение пирогенных веществ достигается стерилизацией в сушильном шкафу при температуре 200°С в течение 45 мин или при 250°С в течение 30 мин. При температуре 120°С пирогенность уменьшается в процессе автоклавирования на следующие величины: в течение 30 мин на 25, 1 ч -- на 70, 2 ч -- на 95, 4 ч -- на 100%.

К физическим методам удаления пирогенов из растворов следует отнести уничтожение их с помощью ультразвука с частотой 2 МГц и интенсивностью 2 Вт/см2 в течение 10 мин. При этом достигается полное разрушение пирогенных веществ. В то же время ультразвук в 800 МГц и интенсивностью 1,5 Вт/см2 в течение 5-- 10 мин незначительно снижает пирогенность воды. При действии ультразвука рН воды изменяется на ±0,75.

Государственным научным центром лекарственных средств совместно с отделом биохимических методов очистки воды АН Украины (Ф. А. Конев, Т. П. Скубко, П. И. Гвоздяк) предложен оригинальный фильтр для получения апирогенной воды. Действие фильтра основано на удерживании микроорганизмов диэлектрическими материалами в электрическом поле, силовые линии которого направлены перпендикулярно к движению потока стерилизуемой жидкости.

Срок использования воды для инъекций регламентируется 24 ч с момента получения, при условии ее хранения в асептических условиях. При более длительном хранении вода поглощает из воздуха углерода диоксид и кислород, может взаимодействовать с материалом используемой емкости, вызывая переход ионов тяжелых металлов, и является средой для размножения микроорганизмов. Поэтому наиболее предпочтительно использование свежеприготовленной воды, которую иногда непосредственно после дистилляции кипятят в течение 30 мин.

Более надежное хранение гарантируется специальными системами, выполненными из инертного материала. Вода в них находится при высокой температуре и в постоянном движении.

Глава 3. Приготовление растворов

3.1 Технологические стадии приготовления растворов

Технология инфузоинных препаратов -- сложное многостадийное производство, включающее как основные, так и вспомогательные процессы.

Изготовление растворов для инфузий проводят в специальных помещениях первого или второго класса чистоты с соблюдением правил асептики. Приготовление растворов для инфузий проводят массообъемным методом, с использованием герметически закрываемых реакторов, снабженных рубашкой и перемешивающим устройством. Растворение медленно- или труднорастворяющихся лекарственных веществ ведут при нагревании и перемешивании.

Стадия приготовления раствора включает следующие операции:

· растворение,

· изотонирование,

· стабилизация,

· введение консервантов,

· фильтрование.

В зависимости от свойств лекарственных веществ некоторые из операций могут быть исключены, например изотонирование, стабилизация, введение консервантов.

3.2 Изотонирование растворов

Среди инфузионных растворов особую группу составляют изотонические, под которыми понимают растворы с осмотическим давлением, равным осмотическому давлению жидкостей организма (плазмы крови, лимфы, спинно-мозговой жидкости и т. д.) Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. В организме оно поддерживается на постоянном уровне действием саморегуляторов. Осмотическое давление плазмы крови в норме держится на уровне 72,52х104 Н/м2 (Па), или 7,4 атм. Растворы с меньшим осмотическим давлением называются гипотоническими, с большим -- гипертоническими.

При введении большого количества растворов в виде внутрисосудистых инфузий осмотическое давление жидкостей организма нарушается, так как клеточные оболочки, обладая свойством полупроницаемости, пропускают воду и препятствуют проникновению многих растворенных в ней веществ. В связи с этим, если клетка снаружи окружена раствором с иным осмотическим давлением, чем давление внутри клетки, происходит движение воды в клетку или из клетки до выравнивания концентрации, т. е. наблюдается явление осмоса.

При введении в кровь гипертонического раствора (Р р-ра > Р внутри клетки) -- вода выходит из клетки. Она обезвоживается, вследствие чего наступает плазмолиз, при котором эритроциты сморщиваются.

При введении гипотонического раствора (Р р-ра < Р внутри клетки) жидкость переходит вовнутрь клетки до момента выравнивания концентрации. Клетка разбухает, клеточная оболочка при этом может лопнуть, а клетка погибнуть. Данный процесс называют лизис, а для эритроцитов -- гемолиз.

Кроме того, внутримышечное и подкожное введение неизотонированных растворов вызывает боль, причем она тем сильнее, чем резче осмотическая разница. Поэтому при внутрисосудистом применении некоторых инъекционных растворов необходимо их изотонирование.

Изотонические концентрации лекарственных веществ в растворах можно рассчитать следующими методами:

1. метод, основанный на законе Вант-Гоффа;

2. криоскопический метод, основанный на законе Рауля;

3. метод эквивалентов лекарственных веществ по натрию хлориду.

За рубежом пользуются также графическим методом расчета изотонических концентраций, позволяющим по разработанным номограммам быстро, но с некоторой приближенностью определить количество натрия хлорида, необходимое для изотонирования раствора лекарственного вещества.

Метод, основанный на законе Вант-Гоффа. Известно, что 1 моль любого недиссоциирующего вещества занимает в водном растворе при 0°С и давлении 10,13х104 Н/м2 (760 мм рт. ст.) 22,4 л. То есть раствор, содержащий в объеме 22,4 л, 1 моль растворенного недиссоциирующего вещества, при 0 °С имеет осмотическое давление 9,8х104 Н/м2.

Для того чтобы в таком растворе осмотическое давление поднять до давления кровяной плазмы (7,4 атм), необходимо вместо 1 моля недиссоциирующего вещества растворить 7,4 моля или 1 моль этого вещества растворить в соответственно меньшем количестве воды: 22,4 / 7,4 = 3,03 л. В полученный результат необходимо внести поправку , так как он верен только для 0°С (или 273 К по шкале абсолютной температуры), а температура тела -- 37°С (или 310 К). Поэтому 1 моль вещества следует растворять не в 3,03 л, а в несколько большем количестве воды

310 * 3,03 / 273 = 3,44 л.

Количество молей вещества при этих условиях будет составлять в 1 л раствора 1 / 3,44 = 0,29. Иначе говоря, чтобы приготовить 1 л изотонического раствора, необходимо взять 0,29 моля лекарственного вещества (неэлектролита) и, растворив в воде, довести объем раствора до 1 л:

m = 0,29 * М или 0,29 = m / М,

где m - количество вещества, необходимое для приготовления 1 л изотонического раствора, г;

0,29 -- фактор изотонии вещества-неэлектролита;

М -- молекулярная масса данного лекарственного вещества.

Пользуясь этой формулой, можно рассчитать изотонические концентрации растворов. Например:

глюкозы (С6Н12O6) 0,29 * 180 = 52,2 г/л или 5,22%;

гексаметилентетрамина (CH2)8N4 0,29 * 140 = 40,6 г/л или 4,06%.

Фактор изотонии проще выводится из уравнения Клапейрона-Менделеева:

PV= nRT,

где Р -- осмотическое давление кровяной плазмы, атм;

V -- объем раствора, л:

п -- число молей растворенного вещества;

R -- газовая постоянная, выраженная для данного случая в атмосферо-литрах, равная 0,082;

Т -- абсолютная температура, К.

Отсюда:

n = P * V / R * T = (7,4 * 1) / (0,082 * 310) = 0,29.

Приведенные расчеты верны, если их проводят для неэлектролитов, т. е. веществ, не распадающихся при растворении на ионы.

Для расчетов изотоничности электролитов нужно учитывать, что они диссоциируют в водных растворах, и их осмотическое давление будет тем больше, чем выше степень диссоциации. Например, вещество в растворе диссоциировано на 100% NаС1 = Nа+ + С1-. В данном случае число элементарных частиц, оказывающих давление, увеличивается вдвое. Если раствор хлорида натрия содержит в 1 л 0,29 моля NаС1, то он имеет осмотическое давление не 7,4 атм, а в 2 раза больше. Следовательно, фактор изотоничности 0,29 к электролитам неприменим. Он должен быть уменьшен от степени диссоциации. Для этого в уравнение Клапейрона-Менделеева вводится коэффициент изотоничности (i), показывающий, во сколько раз увеличивается число частиц вследствие диссоциации. Таким образом, уравнение принимает вид:

Р * V = п * R * Т * i; п = R * V / R * T * i,

откуда т = 0,29 * М / i.

Коэффициент i зависит от степени и характера электролитической диссоциации и может быть выражен уравнением:

i = 1 + а * (n - 1),

где а -- степень электролитической диссоциации;

п -- число элементарных частиц, образующихся из одной молекулы при диссоциации.

Для различных групп электролитов коэффициент 1 может быть подсчитан следующим образом.

Для бинарных электролитов с однозарядными ионами типа К+А- (а = 0,86, n = 2)

1=1 + 0,86 * (2 - 1) = 1,86.

Для бинарных электролитов с двузарядными ионами типа К2+А2- (а = о,50; n = 2)

i = 1 + 0,50 * (2 - 1) = 1,5.

Для тринарных электролитов типа К2+А2- и К2+А2- (а = 0,75; n = 3)

i = 1 + 0,75 x (3 - 1) = 2,5.

Для слабых электролитов (борная кислота, лимонная кислота и т. д.)

i=1,1.

Иногда изотоничность растворов достигается с помощью введения других фармакологически индифферентных веществ. В тех случаях, когда основное вещество не обеспечивает изотоничности раствора, используют натрия хлорида, натрия сульфата или натрия нитрата

При составе инъекционного раствора из трех и более компонентов первоначально рассчитывают, какой объем могут изотонировать указанные количества всех веществ. Затем определяют по разности количество дополнительного вещества, чтобы приготовленный раствор был изотоничным. Осмотическое давление многокомпонентного раствора по закону Дальтона складывается из парциальных осмотических давлений отдельных компонентов.

Изотонические концентрации рассчитывают и по криоскопическому методу, основанному на законе Рауля. Закон Рауля определяет зависимость температуры замерзания раствора от концентрации электролитов в нем. Понижение точки замерзания прямо пропорционально количеству вещества, растворенного в данном количестве растворителя:

Дt = К * С,

где М -- депрессия (понижение температуры замерзания) раствора, °С;

К -- криоскопическая константа растворителя;

С -- концентрация вещества, моль/л.

Изотонические растворы веществ замерзают при одной и той же температуре, т. е. имеют одинаковую температуру депрессии. Температура депрессии сыворотки крови -- 0,52°С и, если приготовленный раствор будет иметь депрессию 0,52°С, то он будет изотоничен сыворотке крови. Для расчета необходимо знать константы депрессии, предположим 1% растворов лекарственных веществ. Искомую концентрацию изотонического раствора находят по формуле:

x = (0,52 / Дt) * 1%

Например, для глюкозы (депрессия 1% раствора равна 0,1°), тогда

x = 0,52 / 0,1 = 5,2%.

Общей формулой для расчетов является:

m1 = (0,52 * V) / (Дt1 * 100)

где т1 -- количество вещества, необходимое для изотонирования, г;

V -- объем, в мл;

Дt1, -- депрессия 1% раствора лекарственного вещества.

При расчете многокомпонентных систем пользуются следующими формулами:

при двух компонентах прописи:

m2 = V * (0,52 - Дt2) / (Дt2 * 100)

при числе компонентов в прописи более двух:

m3 = V * (0,52 - (Дt2 + Дt3 + ...)) / (Дt1 * 100)

Наиболее простым и удобным является метод расчета по изотоническим эквивалентам натрия хлорида.

Изотоническим эквивалентом вещества по натрия хлориду называется количество натрия хлорида, создающее в одинаковых условиях осмотическое давление, равное осмотическому давлению 1 г данного лекарственного вещества. Например, 1 г безводной глюкозы по осмотическому эффекту эквивалентен 0,178 г хлорида натрия. Это означает, что 1 г безводной глюкозы и 0,178 г хлорида натрия изотонируют одинаковые объемы водных растворов. Или, в случае если, например, эквивалент бромида натрия по хлориду натрия равен 0,62, то это означает , что 1 г бромида натрия и 0,62 г хлорида натрия в одинаковых объемах растворов создают одинаковые осмотические давления. Зная эквивалент лекарственного вещества по натрия хлориду, можно определить его изотоническую концентрацию в растворах. В специальных таблицах приводятся изотонические эквиваленты по натрия хлориду для лекарственных веществ. В случае, когда эквивалент лекарственного вещества неизвестен, необходимо пользоваться другими метода расчета.

3.3 Стабилизация растворов

При изготовлении и хранении лекарственных препаратов нередко наблюдается изменение их свойств, протекающее с различной скоростью и степенью проявления. Это связано с уменьшением содержания лекарственных веществ или снижением их фармакологической активности, изменением свойств лекарственных форм и т. д. Подобные изменения влияют на срок годности (хранения) препаратов, который может колебаться от нескольких часов (растворы антибиотиков) или дней (растворы ферментов) до нескольких лет. Вопросам стабильности лекарственных средств в настоящее время уделяется большое внимание.

Протекающие в препаратах процессы можно условно классифицировать на физические, химические и биологические. Условность заключается в их взаимосвязи: химические превращения могут стать причиной изменения физических свойств, в то время как физические изменения становятся причиной нежелательных химических процессов. Биологические же процессы сопровождаются как химическими, так и физическими превращениями.

К физическим процессам, протекающим преимущественно при хранении, следует отнести укрупнение частиц дисперсной фазы, расслаивание, изменение консистенции, испарение, сублимацию и др.

Химические процессы протекают нередко при изготовлении препарата, особенно при термической стерилизации, и сопровождаются разнообразными химическими реакциями -- гидролиз, омыление, окислительно-восстановительные процессы, фотохимические и энзиматические превращения, реже наблюдаются полимеризация и изомеризация и др.

Биологические процессы, обусловленные жизнедеятельностью микроорганизмов, часто приводят к нежелательным химическим превращениям действующих веществ, иногда -- к изменению внешнего вида лекарственной формы.

Стабильность лекарственных препаратов зависит от многих факторов -- температуры хранения, освещенности, состава окружающей атмосферы, способа приготовления, т. е. технологии лекарственной формы, вспомогательных веществ, вида лекарственной формы, особенно ее агрегатного состояния, упаковки и др.

Используемые в настоящее время методы стабилизации лекарственных средств -- химический и физический, нередко применяются в комплексе, дополняя друг друга. Химические методы основаны на добавлении химических веществ -- стабилизаторов, антиоксидантов и консервантов. Физические методы базируются на защите лекарственных веществ от неблагоприятных воздействий внешней среды, применении лекарственных и вспомогательных веществ высокой степени очистки, использовании современного технологического оснащения и результатов научных исследований в технологии лекарственных форм -- применение неводных растворителей, обезвоживание препаратов, ампулирование в токе инертных газов и др.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.