Философия и методология науки

Философский анализ науки как специфическая система знания. Общие закономерности развития науки, её генезис и история, структура, уровни и методология научного исследования, актуальные проблемы философии науки, роль науки в жизни человека и общества.

Рубрика Философия
Вид учебное пособие
Язык русский
Дата добавления 05.04.2008
Размер файла 524,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Случайность открытия (в обозначенном смысле) видна из при-зеров открытий Гальвани (краткое описание ситуации уже дано) и Рентгена (было обнаружено почернение закрытой от света фотопла-стинки при случайном ее контакте с радиоактивным источником). Но, кроме этих хрестоматийных примеров, мы можем привести столько, сколько, пожалуй, открыто принципиально новых явлении природы.

Так, исходной задачей Кулона было не измерение силы притя-жения электрических зарядов, а реализация совершенно ивой про-граммы Гука, в рамках которой Кулон под изобретенные им высо-кочувствительные крутильные весы искал задачи.

«Излучение Черенкова-Вавилова» было открыто в 1934 г. при постановке и решении рядовых вопросов люминесценции жидко-стей, а отнюдь не в связи с программой открытия светового излучения заряженных частиц, движущихся в среде со скоростью, превышающей фазовую скорость света в этой среде.

При исследовании бета-распада в 1934 г. Паули был вынужден для спасения закона сохранения энергии ввести гипотетическую частицу «нейтрино», которую экспериментально обнаружить уда-лось много позднее. И в данном случае в программу исследований Паули не входил поиск такой частицы, как нейтрино.

Флеминг увидел, что микроорганизмы не растут вблизи пени-циллина, и открыл первый антибиотик. Его заслуга здесь в том, что он смог увидеть то новое, чего специально не искал.

Таким образом, надо быть Архимедом, чтобы выскочить из ван-ной с криком «Эврика» и открыть закон действия сил на тело, по-груженное в жидкость; надо быть Галилеем, чтобы при наблюдении раскачивающейся лампы в соборе в Пизе озариться интуицией и сформулировать закон колебаний маятника; надо быть Ньютоном, чтобы при виде падающего яблока утвердиться в законе всемирного тяготения; надо быть Гальвани, чтобы от единичного случая сокра-щения лапки препарированной лягушки при ее контакте с металли-ческим телом прийти к идее нового электрохимического источника тока; надо быть Майером, чтобы при наблюдении изменения цвета венозной крови в тропиках (во время его путешествия на корабле) прийти к всеобщему закону сохранения и превращения энергии; на-до быть Кекуле, чтобы, увидев во сне свернувшуюся змею, прийти к открытию строения молекулы бензола; нужно быть Менделеевым, чтобы при систематизации материала во время подготовки учебника «Основы химии» прийти к формулировке периодического закона химических элементов; надо быть Пуанкаре, чтобы после чашки кофе и бессонницы прийти к открытию класса «автоморфных функций»; нужно быть Флемингом, чтобы, увидев задержку роста культуры микроорганизмов, прийти к открытию антибиотика пенициллина - и т.д., пока не перечислим имена всех великих первооткры-вателей.

В связи с вопросом о соотношении случайности и необходимо-сти при совершении принципиально новых открытий известный американский кардиолог Дж. Лара заметил: «Чаще всего удачу ис-следователя приписывают случаю или ситуации, чем уму. Отчасти это происходит от того, что не все можно объяснить словами, и ко-гда сделавший открытие ученый не способен объяснить, как он сде-лал открытие, то его ошибочно считают просто удачливым. На са-мом же деле открытие почти никогда не является удачей, случайно-стью потому что те исследователи, которые делают одно открытие, обычно делают еще одно, два и более открытий. Очевидно, главным требованием для исследователя является определенное сомнение в авторитетах и установленных доктринах. Многие не способны к по-добному восстанию против установившихся истин» Лара Дж. Дорогами открытий: принципы исследовательской работы в медецине // Будущее науки. Вып 13 М.; Знание 1980. С 177-184..

Кроме того, нередки случаи, когда даже при наличии рабочей гипотезы ее подтверждение происходит благодаря случаю. Так, в 1927 г. К. Девиссон и Л. Джермер обнаружили дифракцию электро-нов, т.е. подтвердили гипотезу де Бройля о волновой природе элек-тронов, создав дифракционную решетку на монокристаллах никеля. Эти монокристаллы ученые получили благодаря тому, что у них случайно разбилась азотная ловушка и окислилась никелевая пла-стинка, восстанавливая которую ученые неожиданно увидели круп-ные монокристаллы никеля (см. об этом, например (Овчинников, 1972, с. 24-25]).

В 1965 г. А. Пензиас и Р. Вилсон зарегистрировали микроволно-вым приемником постоянный «паразитный» фон. В начале они ду-мали, что причиной является голубиное гнездо на антенне, но, когда они удалили голубей с гнездом, фон сохранился. Так было обнару-жено предсказанное Г. Гамовым реликтовое излучение, которое об-разовалось во время зарождения Вселенной. Обнаружение этого из-лучения принесло названным экспериментаторам Нобелевскую премию по физике.

Дополнительно отметим, что надо, конечно, особо различать ошибочные открытия. Например, из опытов взвешивания веществ после прокаливания и наблюдаемого увеличения их веса Р. Бойль сделал открытие что «огонь имеет вес». Открытие флогистона, в свою очередь, было связано с наблюдаемой потерей веса веществ при их горении, что объяснялось наличием в них летучего флоги-стона.

Из этого длинного перечня примеров видно:

1) к открытию приводит случай (до этот случай приходит только к тому, кто находится в состоянии поиска),

2) этот случай порождает интуитивную деятельность, рационализируемую на последнем этапе творческой работы интеллекта в форме соответствующего открытия.

Отсюда видно, что, если пункт первый может быть реализован многими, то пункт второй может быть реализован только при наличии природного дара гения интуитивного прозрения, когда в единичном и случайном усматривается всеобщее и необходимое. Можно человеку без музыкальных дарований дать музыкальное образование, но хорошего музыканта из него не воспитаешь все равно. Можно почти любого человека ввести в сферу научной деятельно-сти, но интуиция одаренного ученого - дар природный, и она не мо-жет быть привита образовательными средствами.

Следующая группа примеров относится к характерной особен-ности открытий - их непризнанием современниками.

Хорошо известно отношение современников (в целом или больших групп их представителей) к учениям Сократа, Эпикура, Бо-эция. Список непризнанных или недооцененных мыслителей удру-чающе велик, и здесь есть возможность только привести ряд харак-терных примеров. Так, например, великий философ ХУIII века Д. Юм получил достойное признание только в XX веке. Это видно по интересу к нему А. Эйнштейна, Б. Рассела и заметному месту в позитивистско-аналитической традиции англо-американской филосо-фии в целом. Как отмечается: «Крупнейшие исследования, посвя-щенные его философской системе (Н.К. Смит) и жизненному пути (Э. С. Мосснер), появились именно в XX в. » Абрамов М.А. Секрет философа Д. Юма // Трактат о человеческий природе. Книга первая. О познании. М ; Канон. 1995 С 5-32..

В свою очередь, основной труд И. Канта «Критика чистого ра-зума» вначале критиковался как за излишнюю сложность изложе-ния, так и за нарочитую новизну идей. Философские идеи А. Шо-пенгауэра, изложенные им еще в молодом возрасте (31 год) в труде «Мир как воля и представление» (1819), не признавались ни за философские, ни за вообще сколь-нибудь существенные почти до кон-ца долгой жизни мыслителя.

Непосредственно в истории научного знания хорошо известно отношение современников к идеям Коперника, Кеплера, Бруно в многих других ученых. Так, например, молекулярное учение А. Авогадро, развитое им на основе его положения о том, что в равных объемах (1811) газов при прочих равных условиях содержится оди-наковое количество молекул, было критически воспринято никем иным, как самим отцом научной атомистики Дж. Дальтоном, и было забыто до тех пор, пока их более чем через полвека не «воскресил» для научного сообщества С. Канниццаро

Основы неевклидовой геометрии казанского ученого Н. Н. Лоба-чевского, изложенные в его труде «О началах геометрии» и пред-ставленные в 1832 г. в Академию наук, были не восприняты в сто-лице известный математик М. В. Остроградский оценил ее отрица-тельно, а журнал «Сын отечества» в 1834 г. поместил статью, про-смеивающую труд Лобачевского.

Открытие фундаментального закона природы - закона сохране-ния энергии Ю. Р. Майером, изложенного в его статье 1841 г. «О ко-личественном и качественном определении сил», не была принята ведущие для того времени журналом физиков «Annalen der Physik» издателя И. К. Поггендорфа.

Основополагающие работы по наследственности Г. Менделя, проведенные на экспериментальном материале по гибридизации го-роха уже я 1856-1863 гг., хотя и были известны ряду именитых бо-таников, тем не менее были не поняты и забыты до аналогичных опытов X. Де. Фриза в 1900 г. и почти одновременных опытов ряда других биологов.

Выше мы приводили примеры непонимания и непризнания ве-личайших достижений человеческой мысли в сфере научного по-знания. Может быть, в технике, близкой своими результатами по-требностям человека, дело обстояло много лучше? Пожалуй, не на-много. Фонограф Эдиссона в 1878 г. был осмеян на собрании фран-цузской Академии как фокус шарлатана. В изобретении телефона, запатентованного А. Беллом в 1876 г., не видели большого будуще-го и вообще его считали вредным для ушей. В электродвигателях на ранних этапах их создания не отмечали большой практической пер-спективы. Наконец, в художественном искусстве (техника тоже ис-кусство) мы хорошо знаем, как резко отрицательно принимались новые музыкальные решения и формы выдающихся композиторов, почитаемых сейчас за классиков первой величины. Наконец, новое выдающееся явление становления исконно русского литературного языка в «Руслане и Людмиле» юного Пушкина критиковали за про-сторечье. Непризнание нового обществом (или, в частном случае, научным сообществом) - не досадные исторические инциденты, а характерная черта становления всякого нового мировидения при его восприятии адептами, апологетами, интерпретаторами установив-шихся догм, коих всегда большинство, и их «голоса» при демокра-тическом решении вопросов о признании того или иного нового знания всегда в большинстве.

§ 4. Основные эвристические установки.

На основании всего сказанного можно назвать следующие ос-новные эвристические установки искать нестандартные познава-тельные пути, необычные даже для самого себя, уже обладающего такой установкой, не только негативно-критически, но и позитивно-творчески рассматривать необычные экспериментальные и теорети-ческие результаты, терпимо относиться к необычным результатам коллег, если они, конечно не результат явной некомпетентности или недобросовестности. Последнее должно войти в идеологию на-учного сообщества в целом во избежание многочисленных ошибок по подавлению нового, чему нас учит история науки.

Таким образом, из действительно эвристических познаватель-ных установок, из контекста истории науки в различных областях можно выделить только одну главнейшую установку изо всех сил терпимо относитесь ко всем необычным (нетрадиционным, не укла-дывающимся в привычные понятия, концепции, схемы, шаблоны, стереотипы, словом, в существующие парадигмы) идеям, теоретиче-ским концепциям, экспериментальным результатам. Для ученых же, ищущих принципиально новых знаний, установка при их общении с познаваемой Природой может быть только одной единственной: «Просите, и дано будет вам; ищите, и найдете; стучите, и отво-рят вам; ибо всякий просящий получает, и ищущий находит, и стучащему отворят» [Мф. 7,7-9].

Вот и вся «эвристика» все остальное - горы макулатуры. До-полнить сказанное можно только примерами.

Для преодоления парадигм, стереотипов, шаблонов, схем, тра-диций, сложившихся в той или иной специальной области знания и науке в целом, можно порекомендовать ученым стремящимся к принципиально новым открытиям, путь Р. Декарта. Декарт, как из-вестно (см, например, в 17 лет от роду покинул в 1612 г. элитарную школу La Fleche и начал странствовать по свету я учиться у самой жизни и природы. Как пишет К Фишер, у Декарта «за эпохой школьного образования следовал пери-од самообразования, в буквальном смысле самообразования, не же-лающего ничего воспринимать извне и принимать на веру, но же-лающего все вывести из себя, обосновать своим мышлением, иссле-довать и открыть. Он часто говорил своим друзьям, что и без ученого воспитания, данного ему отцом, он мог бы написать совершен-но те же научные книги, с той только разницей, что все они были бы написаны по-французски, а не по-латыни» Фишер К. История новой философии. Декарт. Его жизнь, сочинения и учение. Сб. (б) Мир фил. 1994. 560с..

Сам Декарт так комментировал свой шаг оставления изучения наук ради изучения «книги мира»: «Я не хотел более искать никакой долгой науки, за исключением той, которую я мог бы найти в самом себе или в великой книге мира, и, таким образом, посвятил остаток моей юности путешествиям для того, чтобы изучить дворы, войска, вступать в общение с людьми различного душевного склада и обще-ственного положения, запастись многообразным опытом. Таким образом освобождался я постепенно от многих заблуждений, затем-няющих наш естественный свет и делающих нас менее способными повиноваться разум» (цитировано по [Фишер, 1994, с. 172-173]. За-метим существенное обстоятельство, что здесь мы рассматриваем пример становления не беллетриста или политика, а великого мате-матика и философа-рационалиста. Вряд ли современный ученый может себе позволить путешествовать по «Белому свету» более де-сяти лет, но иметь установку освобождения от сложившихся догм, если желает прославиться открытием нового, он должен.

Существует много методик алгоритмов с попытками оптимизи-ровать познавательный научный процесс. Например, Джон Лара приводит семь составляющих исследовательского процесса. Первые шесть - достаточно типичные (выбор предмета исследования, обос-нование точности и надежности исследовательского инструмента-рия, анализ исходных данных и проработка литературы и т. д.). При-ведем седьмой компонент, наиболее специфичный для познания но-вого: «Седьмое и последнее - я хотел бы напомнить будущему исследователю, что не все вещи объяснимы словами и что есть место для интуиции в разработке любой проблемы. Большинство велере-чивых и многословных людей часто являются не лучшими, а худ-шими из исследователей. Исследование в конечном итоге является так же искусством, как и наукой. Способность увидеть необычное в обычном (например, в «обычном» случайном событии «необычную» закономерность) является очень ценным качеством. Ес-ли вы знаете объект ваших исследований и если у вас есть силы вос-стать против установленных догм, вы сможете достигнуть цели в научном исследовании» Лара Дж. Дорогами открытий: принцины исследовательской работы в медецине // Будущее науке. Вып 13. М.: Знание 1980. С 177-181..

Наконец, для открывателей нового можно дать и психологический совет - не расстраиваться от длительного непризнания новой идеи, это естественно, на то она и новая. Кеплер в ситуации нужды, одиночества и непризнания говорил: «Неужели мне может казаться тяжелым, что люди ничего не хотят знать о моем открытии? Если всемогущий Бог шесть тысяч лет ждал человека, который увидел бы, что Он сотворил, то я могу подождать лет двести, пока найдется кто-нибудь, кто поймет то, что я увидел) Карлейль Т. Теперь и прежде. М.: Республика. 1994.-415с..

Что касается «методологии самой методологии», конкретизиро-ванной на основании сказанного выше, то это принцип невозможно-сти (наподобие невозможности создания вечного двигателя) создания эвристической методологии как алгоритмизированного инструмента прогнозируемых открытий. Максимум, на что способна эври-стика - это создавать благоприятные условия для творческой дея-тельности. Начиная с того, что, как минимум, голова должна быть на плечах, далее для открытия нового нужно, как минимум, быть настроенным на постижение нового, а не жить растительной жиз-нью обывателя, а максимум - это те выводы, которые сделаны выше. Как писал Гете «Суха теория, мой друг, но вечно зелено древо жиз-ни». Дело в том, что есть совершенно определенная доля правды во взглядах А. Ф. Лосева на то, что научное знание опирается, конструируется на основе того или иного мифа, наполняющего жизнь че-ловека, а далеко не только в результате эмпирико-рационалистского познания ((объективного мира» В данном случае мир в понимании Лосева есть ((конкретнейшее и реальнейшее явление сущего». Он, в частности, писал «Нельзя живому человеку не иметь живых целей и не общаться с живой действительностью, как бы она ни мыслилась, на манер ли старой религиозной догмати-ки или в виде современной механистической Вселенной. Мифоло-гия - основа и опора всякого знания, и абстрактные науки только потому и могут существовать, что есть у них та полнокровная и ре-альная база, от которой они могут отвлекать те или иные абстракт-ные конструкции» Лосев А. Ф. Форма-Стиль-выражение.-М.; Мысль 1995. 94..

В свете положений настоящего раздела систему методологиче-ских принципов (методология в нормативной форме) нужно рас-сматривать как систему рекомендательных ориентации познава-тельной деятельности, задаваемых основоположениями, выражен-ными хотя и в нормативной форме, но являющимися по сути не принципами, а рекомендациями.

§ 5. Наиболее известные методологические принципы и подходы.

Перейдем теперь собственно к характеристике основных (точ-нее, наиболее известных, так как выделение основных принципов спорный вопрос) методологических принципов и подходов. Хотя, как я многократно оговаривался, методологические принципы и подходы не дают однозначного пути к познанию нового, и в этом смысле они расплывчаты, все же сформулировать их в отличие от эвристических учений можно вполне в строгом и явном виде. Эти познавательные подходы и до их явной формулировки именно как принципов, конечно, в неосознанной форме, применялись «давным-даавно», но рефлексия их конкретизация, подробный анализ сфер функционирования были произведены преимущественно в методо-логии науки XX века.

По каждому из принципов опубликовано столько литературы, что она составит многие тома, но по сравнению с кратким их изло-жением чтение их не прибавит заметно методологического образо-вания конкретным исследователя. Детальные исследования полезны больше профессионалам методологам для конкретизации и защиты своих позиций.

Принцип соответствия

Систематизация знания в данной области научного познания на основе новых принципов (идей, концепций, теорий) должна вклю-чать «старое» знание в этой области как элемент этой системы (как частный случай, как предельный случай и т. п.). Например, реляти-вистская механика при малых скоростях движения тел переходит в классическую механик Ньютона.

Становление принципа соответствия в методологии научного познания обычно связывается с именем Н. Бора, хотя в разных фор-мах идеи принципа соответствия высказывались и ранее. Так на-пример утверждается «Еще в 1913 г. Нильс Бор сформулировал знаменитый «принцип соответствия», который устанавливал зако-номерное взаимоотношение между классической теорией излечения и квантовой теорией. Он сыграл настолько важную роль в развитии атомной теории, что позволил А. Зоммерфельду назвать «принцип соответствия» Н. Бора «волшебной палочкой» Антонов А. Н. П. Приемственность и возникновение нового знания в науке. М.; Изд-во МГУ 1985. 171с.. Од-нако в прошлом веке аналогичные идеи мы находим у Бутлерова, который писал «Когда мы будем знать ближе натур химической энергии, самый род атомного движения когда законы механики по-лучат и здесь причожение тогда учение о химическом строении па-дет как падали прежние химические теории но, подобно большин-ству этих теорий, оно падет не только для того, чтобы исчезнуть, а для того, чтобы войти в измененном виде в круг новых, более широ-ких воззрений» Бутлеров А. М. Социнения. М.; 1953 Т.1. 640 С...

Этот принцип в большинстве случаев помогает проводить раз-деление научного и ненаучного знания.

Принцип дополнительности

Многие объекты исследования (от простейших объектов микро-мира типа элементарных частиц до сложнейших типа человека и общества) более полно описываются на основании интеграции разнеродных и даже противоречивых знаний (теорий, концепций, под-ходов). Например, корпускулярно-волновой дуализм в физике или учение о душе и теле (религия), учение о двойственной истине (Ибн-Рушд), субстанции мыслительной и протяженной (Декарт) при описании человека, синхронический и диахронический подходы в лингвистике и культурологии, интерналистский и экстерналистский подходы в методологии и истории науки. Как видно, идея дополни-тельности различных знаний об одном и том же объекте, не под-дающихся полному синтезу, известна с давних времен. Формули-ровка же «принципа дополнительности» в явном виде связывается опять-таки с именем Н. Бора: «Для того, чтобы достичь лучшего по-нимания между парными понятиями классической физики, Нильс Бор ввел понятие «дополнительность». Он рассматривал картину частицы и картину волны в качестве взаимодополняющих описаний одной и той же реальности, каждое из которых истинно лишь час-тично и имеет ограниченное применение» Капра .Ф. Дао физики. СП (б) «Орис». 304с..

Принцип пролиферации научных теорий (илианархистская теория научного знания П. Фейрабенда).

Этот принцип, согласно которому возможность наиболее полно-го познания объекта увеличивается вместе с количеством и разно-образием теоретических идей, можно назвать «принципом дополни-тельности в квадрате». Хотя этот принцип действительно похож на принцип дополнительности, доведенный до абсурда, тем не менее при познании сложных объектов (если взять, например, проблему «Человек и все существующие подходы, теории, направления, шко-лы, учения») он показывает свою состоятельность.

Принцип верификации

По существу - это аналог принципа достаточного основания формальной логики. Основной смысл его прост - вводимые в систе-му научного знания положения должны быть обоснованы. Вся сложность в проблеме выбора общепринятых, критериев истинного или обоснованного научного знания, а здесь, к сожалению, сходи-мости у ученых нет. В логиче-ском позитивизме таким критерием является возможность эмпири-ческого обоснования научного знания путем сведения всякого зна-ния к простейшим атомарным эмпирическим протокольным сужде-ниям, констатациям.

Принцип фальсификации

Согласно этому принципу, только то знание можно принимать за научное, которое сформулировало так, что класс его потенциаль-ных фальсификаторов представляет непустое множество. Проще го-воря, для всякого знания, претендующего на статус научного, долж-ны видеться совершенно определенные возможности его проверки путем опровержения. Этот принцип наиболее продуктивен при отделении традиционного научного знания от околонаучных, паранаучных, мистических, эзотерических и т.п. учений (подчеркнем, что здесь мы не критикуем названного рода учения в смысле отказа им в поаве на постижение мира, здесь вопрос только в выделении собст-венно научного пути познания мира от других возможных). Напри-мер, если кто-то уверяет, что видел летающую тарелку с иноплане-тянами, выглядывающими из иллюминаторов, то для научного рас-смотрения этого знания нужна возможность критической проверки этого утверждения на предмет ложности или достоверности (свиде-тели, фотография, зарегистрированные радиосигналы и т.п.).

Данный принцип сформулирован К. Поппером, хотя в более или менее ясной форме основная идея принципа высказывалась и ранее, например, Ф. Ницше, который в сочинении «По ту сторону добра и зла» писал: «Поистине немалую привлекательность каждой данной теории составляет то, что она опровержима: именно этим она влечет к себе более тонкие умы» Нитще Ф. По ту сторону добра и зла // Нитще Ф..

Принцип редукции - познание некоторой целостности, системы, «сложности» через познание более простых ее составляющих - час-тей, элементов. Другими словами, принцип редукции - познание не-которых интегральных свойств исследуемых объектов (целостностей, систем) через составляющие их части. Этот принцип наиболее характерен для научного познания каких бы то ни было объектов неживой и живой природы, социальных систем, социоприродных систем вплоть до Вселенной. Так, некоторые свойства атома можно вывести из свойств его ядра и электронов, живой клетки из составляющих ее органоидов, об-щества - из свойств составляющих его социальных групп, экономи-ки, геополитического положения и т.п.

Принцип целостности - познание индивидуальных целостных свойств исследуемых объектов во взаимодействиях с другими объ-ектами (целостностями и т.п.). В простейшем выражении: целое больше суммы составляющих его частей. Точнее, у всякой системы, целостности есть свойства, которые не сводимы (нередуцируемы) ко всей совокупности свойств составляющих элементов, частей. Свой-ства молекул не исчерпываются свойствами составляющих их ато-мов; свойства живых клеток не исчерпываются свойствами состав-ляющих их молекул и органоидов; свойства популяции не исчерпы-ваются свойствами входящих в нее особей; свойства языка не ис-черпываются свойствами составляющих его лексических единиц, грамматических правил, семиотических характеристик .

Принцип контрредукции

Принцип сформулирован В.И. Курашовым Курашов В. И. Познании природы в интеллектуальных коллизиях научных знаний. М. Наука 1995. 283с.. Утверждает в онтологической части наличие во всякой естественной (природной) системе (целостности) высших имманентных «метацелостных» свойств и возможность их познания (гно-сеологическая часть) при исследовании данной системы (целостно-сти) как элемента, части в составе более высокоорганизованной сис-темы. Причем специально подчеркивается, что речь идет именно об имманентных, изначально присущих данной целостности свойст-вах. Принцип контрредукции распространяется на все естественные объекты от элементарных частиц до социоприродных систем, есте-ственного языка, Вселенной, в том числе, если они берутся как сис-темы, включающие не только актуальные, но и исторические связи между их элементами.

Таким образом, принцип контрредукции - познание высших «метацелостных» свойств объектов (целостностей, систем) при ис-следовании их как элементов более высокоорганизованных систем, в том числе и как элементов эволюционирующих природных систем (последний принцип сформулирован и разрабатывается автором). Раскрываемые в результате применения принципа контрредукции имманентные «метацелостные» свойства исследуемых объектов мо-гут быть также названы имманентной «памятью» о высшем и буду-щем.

Принцип контрредукции не просто основывается на известном положении, что «свойства целого больше суммы свойств частей», но выделяет у естественных образований (целостностей) высшие (метацелостные) свойства, которые могут быть вне специального поля зрения традиционной проблемы о том, насколько некоторые свойства частей могут определять свойства целого. Выявленные це-лостные свойства того или иного объекта, не сводимые к свойствам частей, не обязательно будут «метацелостными свойствами».

Системный подход - представляет собой разветвленную об-ласть общенаучного знания, в предмет которой входят и методоло-гические проблемы редукции, целостности и контрредукции, которые мы выделили отдельно в силу их особой значимости для мето-дологии научного познания. Надо отметить, что принципы редук-ции, целостности и контрредукции дают разные уровни видения одного и того же объекта и, соответственно, выявляют свойства, кото-рые следует рассматривать с точки зрения принципа дополнитель-ности, при полном описании объекта как целостности, включенной в единую систему развивающейся Вселенной.

Принцип моделирования и метод аналогии - основан на возможности познания некоторых свойств объектов путем исследова-ния подобных им материальных или нематериальных (концептуаль-но-понятийных, логико-математических) конструкций. По сущест-ву это путь дознания по аналогии. Понятия «подобие», «аналогия», «модель» с методологической точки зрения во многом сходятся. В связи с этим для большей ясности в понимании принципа модели-рования (познания по аналогии) полезно привести слова И. Канта: «...Познание по аналогии ... не означает, как обыкновенно понимают это слово, несовершенное подобие двух вещей (здесь имеется, оче-видно, в виду подобие вещей генетическое), но совершенное подобие двух отношений между совершенно неподобными (опять-таки очевидно, по природе, генетически) вещами» Кант И. Пролегомены ко всякой будуще метафизики могущей возникнуть в смысле науке. М.; 1993. 210с..

Как известно из логики, доказательства по аналогии являются одними из наиболее слабых. Также известны и проблемы выбора адекватной модели или адекватной исследуемому объекту аналогии. Такого рода проблемы можно пояснить, например, следующими эпизодами из истории становления нового научного знания: «Ярким примером контроверзы в истории науки, возникшей на почве непра-вомерных заключений по аналогии., является известный спор между Прустом и Бертолле о составе химических соединений: обобщив факты четкого проявления кратных весовых отношений, Пруст сде-лал вывод об определенности состава химических соединений, сде-лав упор на более сложные химические соединения, в которых оп-ределенность состава практически незаметна; Бертолле отстаивал тезис о неопределенности состава. В своей области каждый из них был по-своему прав, и спор возник именно из-за вторжения каждого в область другого. Поскольку Пруст придерживался более общего атомистического учения, концептуальное становление которого как раз в те годы (в первые десятилетия XIX в.) набирало силы, Пруст в этом споре победил. В случае противостояния волновой и корпус-кулярной картин в теории теплового излучения в начале XX в. ис-ход был иным, синтетическим, и снова по причине существования более общей концепции - корпускулярно-волнового дуализма мате-рии» Вяльцев А. Н. Открытие элементарных частиц-М.; 1984. 272с.

Установка на преодоление парадигм

Установка на преодоление сложившихся парадигм (образцов, шаблонов, стереотипов, схем, догм интерпретации знаний и стилей мышления) в научном сообществе - важный фактор для ориентации научной познавательной деятельности в направлении открытия принципиально нового и приятия нового вне шаблонных интерпретаций да базе сложившихся концепций.

Наиболее обстоятельно проблемы консервативности мышления и отторжения всего нового в связи со складывающимися в научном сообществе «парадигмами» рассмотрены в известной работе Т. Куна «Структура научных революций».

Принцип историзма

Более полное изучение объекта возможно только при его иссле-довании в процессе его генезиса и развития. О становлении и сущности этого принципа рассказывается в специальном разделе.

Методы абстрагирования, идеализации и формализации

При научном исследовании удобно представлять реальные объ-екты в виде объектов с ограниченным набором наиболее сущест-венных свойств (абстрагирование) и мыслительных их образов со строго установленными свойствами идеальный газ, материальная точка, абсолютно черное тело (идеализация). Свойства этих объек-тов и их самих в целом легко представлять в символической, знако-вой форме, т. е. формализовать. Это позволяет легче оперировать их мыслительными образами я математическими символами, их обозначающими (использовать математический формализм).

Метод логики: анализ, индуктивный и дедуктивный - выделение в процессе исследования объекта составляющих его частей, построение общих суждении на основании отдельных фак-тов, выведение частных суждений на основании известных общих положений (подробнее об этом сказано в разделе посвященном рас-смотрению познавательных возможностей логики).

Природа методологических принципов и подходов различна. Например, принципы редукции, целостности, контрредукции выражают природу естественных объектов исследования, принципы ве-рификации фальсификации, законы логики - формы познавательно-мыслительной деятельности, принципы дополнительности, исто-ризма, системный подход - выражают одновременно и свойства объектов исследования, и свойства познавательно-мыслительной деятельности.

Список методологических принципов носит открытый характер и продолжает увеличиваться. Автор не усматривает в часто мусси-руемом «антропном принципе» ничего конструктивного для мето-дологии научного познания природы Его специальное выделение, быть может, полезно для объединения различных антропоцентристских учений, восходящих в античности Основная же идея антропного принципа основывается, по сути, на тривиальном утверждении, что все существующие во Вселенной объекты не должны противоречить своим существованием всем остальным существующим в этой же Вселенной объектам. В этом смысле вместо антропного принципа можно с равным правом говорить о «принципе электрона» и «принципе крокодила»

В дополнение к сказанному следует отметить, что нормативная методология может выступать, помимо четко сформулированных принципов, в «полунормативной» и одновременно в «полудескриптивной» формах в учениях об идеалах и нормах научного познания, взаимодействии наук, становлении и обосновании научных теорий, принципах экспериментальной деятельности, интердисциплинарных проблемах интеграции и синтеза знаний, возможностях и пределах научного познания, языке научного познания. Кроме того, специфи-ка специальной методологии выражайся в конкретизированных обработках методологии отдельных научных областей математики, физики, химии, биологии, техники и технологии, эволюционных процессов, экологии и т. д.

К высказанным замечаниям по вопросу места и функций мето-дологии в системе научного познания следует добавить, что помимо операционально-практической значимости методологии в ее функ-циях как метода (по Канту «как способа действия согласно осново-положениям»), можно говорить о значении методологии как систе-мы знания, раскрывающего некоторые механизмы интеллектуально познавательной деятельности человека, что важно как для самопо-знания человека, так и для создания так называемых систем «искус-ственного интеллекта». Кроме того, нужно понимать, что любая на-учно-познавательная деятельность всегда основана на каком-либо методе и представлениях о нем (т. е. некоторой протометодологии, или неявной методологии). Другое дело, что не все исследователи специально изучают и разрабатывают методологическую проблема-тику. Последнее важно для осознания того, что методология - не-отъемлемый компонент любой научно-познавательной деятельно-сти.

Четыре рода свойств естественных объектов

Выявление родов качественно специфичных свойств, присущих всем естественным объектом - важная задача методологии науки. Под естественными объектами здесь понимаются любые целостные объекты, происхождение которых не связано с сознательным твор-чеством человека атомы и молекулы, живые организмы, естественный язык, общество и т. п.

В результате осмысления большого объема научных знаний в различных областях я личного опыта работы в конкретных науках я выделил четыре рода качественно различных свойств, присущих любом естественному объекту.

Субцелостные свойства.

Онтологический статус - имманентные, неэмерджентные. Эпистемологический статус - редуцируемые к свойствам со-ставляющих частей, другими словами свойства частей, которые мо-гут определять свойства целого.

Примеры масса, электрический заряд тел, частичный смысл предложения как целого, непосредственно связанный со смыс-лом составляющих высказывание слов (частей). Познаватель-ный подход: принцип редукции

Целостные свойства

Онтологический статус - имманентные, эмерджентные.

Эпистемологический статус - нередуцируемые к свойствам со-ставляющих частей, т. е. не сводимые к свойствам частей .Эти свой-ства определяют статус целого в природе как индивида во взаимо-отношениях с другими объектами-целостностями.

Примеры целостных свойств: способность живых организмов к целостному существованию во взаимоотношениях с другими орга-низмами и в неравновесном состоянии с окружающей средой, бук-вальный целостный смысл высказывания в естественном языке, психика толпы, нации, этноса.

Познавательный подход: принцип целостности (холистский подход).

Метацелостные свойства

Онтологический статус - имманентные, эмерджентные

Эпистемологический статус - нередуцируемые к свойствам со-ставляющих частей, другими словами, высшие имманентные потен-циальные свойства целого, проявляющиеся в иерархической связно-сти природных образований (систем, целостностей) при функцио-нировании данного целого в более высокоорганизованной системе.

Примеры: самоорганизация молекул, информационно-регуляционные свойства ДНК, особый смысл идиоматических обо-ротов, пословиц, поговорок.

Познавательный подход: принцип контрредукции

Ad-hos-целостные свойства

Онтологический статус - неимманентные, эмерджентные

Эпистемологический статус - редуцируемые к свойствам целостностей, в которые они входят как части (редуцируемые к сложно-сти).

Примеры: специфические биохимические функции простых не-органических веществ в сложных системах живой клетки (не при-сущие этим веществам в изолированном виде); смысл слов, предло-жений в большем контексте не присущий этим семантическим еди-ницам самим по себе, в изолированном от контекста виде.

Познавательный подход: Ad-hoc-целостный подход (иногда этот подход включают в понятия «целостный подход»).

Необходимо пояснито особенности названных четырех видов свойств на при-мере целостных объектов материальной и идеальной природы.

Вопрос об ad-hoc-целостных свойствах не нуждается особо в пояснении и обосновании примерами, поскольку эти свойства не есть явление сущности познаваемого объекта они неимманентны ему. Данные свойства есть результат влияния большей целостности (системы) на данный объект как свою составляющую часть Можно сказать, что эти свойства выражают «конформизм» объекта по от-ношению к «силе» большей целостности.

Наиболее наглядным и показательным примером, показываю-щим специфику названных выше свойств, является область физико-химической биологии, связанная с исследованием совокупных свойств молекулярных образований высшей организации - биопо-лимеров типа ферментов, ДНК, РНК. Возьмем для примера пробле-мы познания комплекса свойств, присущих молекуле ДНК. Так, молекулу ДНК можно исследовать через свойства отдельных ее со-ставляющих атомов, природы отдельных химических и слабых (здесь физических) связей, функциональных групп, электрических зарядов отдельных фрагментов и т.д., т.е. на основании метода ре-дукции.

Наряду с этим можно исследовать свойства молекулы ДНК как целостного образования, свойства, не сводящиеся полностью к свойствам отдельных ее составляющих способность вступать в хи-мические взаимодействия с веществами определенных классов, об-ладать определенными седиментационными и реологическими ха-рактеристиками в соответствующих средах и др. Однако, нетрудно установить, что на основании метода редукции и целостного подхо-да, т е рассматривая молекулу ДНК как целостную молекулу и мо-лекулу, состоящую из набора элементов, мы не имеем возможности познать все присущие ей свойства Только тогда (и только тогда), когда мы будем исследовав молекулу ДНК как элемент в более высокоорганизованной системе (что не предписывается специально ни принципом целостности, ни, тем более, принципом редукции), мы можем раскрыть некоторые присущие ей высшие «метацелостные свойства». Для молекулы ДНК более высокоорганизованной систе-мой, в которой она функционирует как элемент, является система взаимосвязанных и регулируемых процессов метаболизма живой клетки

Подчеркнем, что речь идет об имманентных высших, т. е. «метацелостных», свойствах ДНК. Это хорошо видно из истории развития научных знаний о молекулярных составляющих живых организмов. Действительно, нуклеиновые кислоты и белковые тела были выде-лены из живых организмов в XIX в. и подвергались разнообразным исследованиям в изолированном виде, т.е. исследовались как хими-ческие объекты в химических экспериментальных ситуациях.

В результате к середине XX в. были раскрыты их структура как макромолекул и основные физико-химические свойства, но только в результате исследования функционирования этих молекулярных (химических) объектов в живой клетке были раскрыты их высшие информационные и регуляционные свойства. Другими словами, только в указанном выше случае мы получаем возможность обна-ружить заложенные в молекуле ДНК свойства как носителя генети-ческой информации и установить, что последовательность нуклеотидов не случайный набор групп определенной природы (азотистых оснований), а генетический код. Здесь именно на основании специ-фического познавательного подхода, эксплицируемого как «прин-цип контрредукции», мы получаем возможность познания высших, «метацелостных», свойств ДНК (которые, что важно подчеркнуть, присущи данному объекту как таковому, а не возникают у него только вследствие каких-либо воздействии в системе).

Здесь принцип контрредукции дает возможность для познания ряда сущностных свойств, имманентных объекту, а не только тех свойств, которые дополнительно появляются при включении объек-та в состав той или иной системы ввиду его неизбежной трансфор-мации, модификации и т. п. Так, например, установив свойства ДНК как матрицы с кодовой записью аминокислотной последовательно-сти, мы далее можем работать с изолированными ДНК и по генети-ческому коду расшифровать соответствующие аминокислотные по-следовательности у тех или иных белков и наоборот, по последова-тельности аминокислот изолированных белков определять последо-вательность нуклеотидов в ДКК. Более того, информационные и ре-гуляционные свойства молекул ДНК и РНК, биокаталитические и регуляционные свойства ферментов, познанные па основании метоконтрредукции в системах живой клетки, могут реализоваться в искусственных системах, которые и по материальному составу, и по организации отличаются от нативных («живых») систем.

Применение принципа контрредукции при рассмотрении его функционирования в сфере естествознания не ограничивается исследованием высших свойств объектов только в статистических материальных системах или системах с ограниченным временем акционирования (каковыми являются, например, искусственно организуемые химические процессы или процессы в отдельных конкретных организмах). Возможности метода более широки, так как под более высокоорганизованной системой в отношении к методу контрредукции следует понимать любую пространственно-временную, в том числе эволюционирующую, природную систему. Под пространственно-временной (или в частном случае пространст-венно-темпоральной) системой мы подразумеваем некоторую из-менчивую во времени систему (неорганическую, органическую, со-циальную и т. п.), которую по некоторым инвариантным признакам мы выделяем как некоторую целостность и определенный объект исследования. Для каждой такой системы можно ввести понятие элементарного отрезка времени, т. е. максимального временного ин-тервала, для которою рассматриваемые изменения в системе незна-чительны. Размерности этих отрезков для космологии, видимо, по-рядка тысяч лет и более, для геологи - порядка десятков и сотен лет, для микробиологии - порядка времени одной-двух генераций (порядка минут), для химической кинетики - от долей секунд до ча-сов, для истории общества и культуры - порядка десятков и сотен лет.

В пространственно-временных системах неизвестные высшие свойства исследуемого объекта будут проявляться вследствие нали-чия в системе не только актуальных материальных, но и временных, исторических причинно-следственных связей. Характерный пример, вскрывающий объективные основания и возможности метода контрредукции в системах названного типа, - учение о химической эволюции, учение о способностях молекулярных образований к самоорганизации, структурно-качественным усложнениям в естественно-исторических условиях вплоть до образования самооргани-зующихся предбиологических и биологических систем

В отношении нашего вопроса можно учесть то, что установле-ние принципиального свойства молекул - способности к самоорга-низация, химической эволюции - могло осуществиться только в результате контрредукции Действительно, эволюционное учение в биологии, зародившееся в ХIХ в., при ретроспективном рассмотре-нии эволюции живых организмов могло исходить только из простейших одноклеточных и их молекулярных (субклеточных) составляющих. Это обстоятельство совместно с идеями первичной эволю-ции Природы на уровне неорганической материи, развиваемыми в космологии, приводило к постановке проблемы пред биологической, т. е. химической эволюции Важно, что в историко-логическом про-цессе развития научною знания вначале была поставлена проблема химической эволюции, а лишь затем стали проводиться конкретные модельные исследования химических самоорганизующихся систем. Таким образом, установление высшего свойства молекул - способ-ности к самоорганизации вплоть до образования высокоструктури-рованных систем с пространственно-временной организацией - яви-лось результатом контрредукции - рассмотрения молекул в эволю-ционирующей естественно-исторической системе

Для рассмотрения четырех видов свойств возьмём теперь иде-альный естественный объект - язык. Для примера рассмотрим идио-матическое выражение «Лучше синица в руке, чем журавль в небе» Поскольку речь идет о неизвестных свойствах целого, то лучше себе представить иностранцев, которые хорошо знаю лексику, грамма-тику русского языка, но не знают литературного и фольклорного языка и при этом проводят исследование названной выше идиомы.

Если мы располагаем всеми частями но только ими, т. е. слова-ми лучше, руке, небе, в, чем, синица, в, журавль, - то мы можем кое-что сказать о целом. Например, что в выражении речь идет о синицах, журавлях, небе и т. п. Эти наши ограниченные, но не пус-тые смыслы (в данном контексте «свойства») целого и есть субцелостные свойства

Если нам представлено все высказывание «Лучше синица в ру-ках, чем журавль в небе», то мы можем понять (при условии, если мы не знаем более общий смысл идиомы) только букварный смысл этого выражения, - т.е., что синица в руке лучше журавля в небе (хотя зачем они нам нужны?). Этот буквальный смысл и будет цело-стным свойством данного выражения.

Если же мы (продолжаем представлять себя иностранцами, ко-торые не знают данной идиомы русского языка) будем исследовать это выражение во многих контекстах, т. е. в более сложной системе, чем само выражение как целое, то мы через восприятие инварианта смысла данного выражения в различных контекстуальных употреб-лениях поймем, что данное выражение имеет смысл более широкий, чем буквальный. Лучше в жизни стремиться к малому и доступному, чем к большому, но малодоступному. Этот смысл и будет метацелостным свойством исследуемого целого.

Наконец, если в каком-либо контексте данному выражению придается специальный смысл, то мы можем фиксировать ad-hoc-целостные свойства. Например, если сказать «Ошибочно считать, что синица в руке лучше, чем журавль в небе», то указанная оши-бочность не является ни буквальным смыслом выражения, ни его более общим (высшим) как идиомы, а относится только к данному контексту. Это и есть пример ad-hoc-целосгных свойства.

§ 6. Общенаучные методы и приемы исследования

В структуре общенаучных методов и приемов чаще всего выделяют три уровня:

v методы эмпирического исследования;

v методы теоретического познания;

v общелогические методы и приемы исследования.

Рассмотрим кратко суть этих методов, приемов и операций.

1. Методы эмпирического исследования.

1. Наблюдение - целенаправленное пассивное изучение предметов, опирающееся в основном на данные органов чувств. В ходе наблюдения мы получаем знания не толь-ко о внешних сторонах объекта познания, но и - в качестве конечной цели - о его существенных свойствах и отношениях.

Наблюдение может быть непосредственным и опо-средованным различными приборами и другими тех-ническими устройствами. По мере развития науки оно становится все более сложным и опосредованным. Основные требования к научному наблюдению: одно-значность замысла (что именно наблюдается); возмож-ность контроля путем либо повторного наблюдения, либо с помощью других методов (например, экспери-мента). Важным моментом наблюдения является интер-претация его результатов - расшифровка показаний приборов и т. п.

2. Эксперимент - активное и целенаправленное вмеша-тельство в протекание изучаемого процесса, соответ-ствующее изменение исследуемого объекта или его вос-произведение в специально созданных и контролируе-мых условиях, определяемых целями эксперимента. В его ходе изучаемый объект изолируется от влияния по-бочных, затемняющих его сущность обстоятельств и представляется в «чистом виде».

Основные особенности эксперимента:

а) более актив-ное (чем при наблюдении) отношение к объекту иссле-дования, вплоть до его изменения и преобразования;

б) возможность контроля за поведением объекта и про-верки результатов;

в) многократная воспроизводимость изучаемого объекта по желанию исследователя;

г) воз-можность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях.

Виды (типы) экспериментов весьма разнообразны. Так, по своим функциям выделяют исследовательские (поиско-вые), проверочные (контрольные), воспроизводящие экс-перименты. По характеру объектов различают физические, химические, биологические, социальные и т. п. Существу-ют эксперименты качественные и количественные. Широ-кое распространение в современной науке получил мыс-ленный эксперимент - система мыслительных процедур, проводимых над идеализированными объектами.

3. Сравнение - познавательная операция, выявляющая сход-ство или различие объектов (либо ступеней развития одно-го и того же объекта), т. е. их тождество и различия. Оно имеет смысл только в совокупности однородных предме-тов, образующих класс. Сравнение предметов в классе осу-ществляется по признакам, существенным для данного рассмотрения. При этом предметы, сравниваемые по од-ному признаку, могут быть несравнимы по другому.


Подобные документы

  • Процессы дифференциации и интеграции научного знания. Научная революция как закономерность развития науки. Философское изучение науки как социальной системы. Структура науки в контексте философского анализа. Элементы логической структуры науки.

    реферат [25,6 K], добавлен 07.10.2010

  • Философский образ современной науки. Методологии и мировоззренческие итоги научного развития. Проблематика оригинальных текстов современных эпистемологов. Структура и динамика научного знания. Проблемы переосмысления соотношения науки и эзотеризма.

    учебное пособие [2,6 M], добавлен 12.01.2015

  • Философия науки, как ветвь аналитической философии, которая занимается изучением науки как особой сферы человеческой деятельности. Методологическая концепция науки в трудах К. Поппера. Роль парадигм в науке. Методология научно-исследовательских программ.

    реферат [48,2 K], добавлен 27.04.2017

  • Наука как особый вид знания и подходы к изучению науки. Позитивизм как философия научного знания, стадии его развития. Роль философии на позитивном этапе. Отличительные особенности неопозитивизма и сущность концепции нейтральных элементов опыта.

    реферат [85,6 K], добавлен 17.12.2015

  • Современная ветеринарная медицина как дифференцированная отрасль научного знания. Философия науки: определение сущности природы, общие закономерности и тенденции познания. История паразитологии, методология научного исследования в ветеринарной науке.

    реферат [34,4 K], добавлен 19.05.2011

  • Различие науковедческого и философского анализа науки. Эмпиризм и рационализм Нового времени в качестве методологии науки. Взаимосвязь античной науки и философии. Исторические формы научных картин мира. М. Полани о личносном неявном знании субъекта.

    шпаргалка [2,0 M], добавлен 11.11.2011

  • Проблематика философии науки, ее особенности в различные исторические эпохи. Критерии научности и научного познания. Научные революции как перестройка основ науки. Сущность современного этапа развития науки. Институциональные формы научной деятельности.

    реферат [44,1 K], добавлен 24.12.2009

  • Основные исторические периоды и типы соотношений философии и науки. Опосредованная проверяемость философских знаний. Принципы мировоззрения, применённые к процессу познания и практике. Трактовка концепции науки согласно И. Лакатосу, П. Фейерабенду.

    реферат [53,7 K], добавлен 06.02.2011

  • Понятие и основные компоненты науки, особенности научного познания. Сущность и "эффект Матфея" в науке. Дифференциация наук по отраслям знаний. Философия как наука. Специфика познания социальных явлений. Методологические аспекты существования науки.

    курсовая работа [31,2 K], добавлен 18.10.2012

  • Исторические источники аналитической философии науки. "Лингвистический поворот" в философии. Краткая история развития логического позитивизма. Характеристика главных особенностей принципа верификации. Модель развития научного знания по Томасу Куну.

    реферат [23,7 K], добавлен 15.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.