Клинико-биохимические исследования

Основные методы разделения и выделения веществ при биохимических исследованиях. Количественное определение белка в сыворотке крови. Химическая природа нуклеопротеидов. Применение единиц СИ для выражения результатов клинико-биохимических исследований.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 11.03.2013
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. Биохимическое исследование мочи

Моча образуется и выделяется почками. Первичная моча представляет собой ультрафильтрат крови. Она содержит все компоненты крови, кроме форменных элементов и белков, масса которых превышает 50000. В результате реабсорбционных и секреторных процессов в канальцах и собирательных трубках почек формируется окончательная моча. Изменения функции и повреждения различных органов отражаются на химическом составе крови, а следовательно, на компонентах ее ультрафильтрата (первичная моча) и затем на составе окончательной мочи. Нарушения деятельности почек непосредственно сказываются на физико-химических свойствах выделяемой мочи и содержании в ней различных веществ. Поэтому биохимические исследования мочи играют важную роль в клинике для диагностики и определения прогноза заболевания, а также для контроля за эффективностью проводимого лечения.

В состав мочи входят вода, органические и минеральные соли, всего около 150 веществ. В клинико-биохимических лабораториях проводят общий и специальный анализ мочи. Общий анализ включает исследование физико-химических свойств мочи и определение в ней ряда патологических компонентов: белок, сахар, кетоновые (ацетоновые) тела, гемоглобин, пигменты и индикан. При необходимости подсчитывают также количество эритроцитов и лейкоцитов в моче. Общий анализ обязателен при первичном обследовании пациента и диспансерном наблюдении. Специальный анализ, т.е. определение прочих компонентов мочи (метаболиты, ферменты, отдельные минеральные вещества и т.д.) проводится при подозрении на поражение конкретного звена обмена или определенного органа.

Работа 95. Исследование физико-химических свойств мочи

Оборудование. Мерный цилиндр вместимостью 1 или 2 л; урометры с делениями от 1,000 до 1,030 кг/л и от 1,030 до 1,060 кг/л; термометр; фильтровальная бумага; стеклянные цилиндры вместимостью 50 или 100 мл; универсальная индикаторная бумага; стаканчик.

Материал. Суточная моча, взятая у обследуемого.

а. Характеристика суточного объема мочи (диурез). Суточный объем мочи замеряют с помощью мерного цилиндра на 1 или 2 л. В норме он составляет в среднем 1500 мл у мужчин и 1200 мл у женщин. Объем мочи выше 2200 мл и ниже 500 мл в сутки указывают на патологию.

б. Характеристика цвета мочи. Цвет мочи оценивают визуально. В норме он соломенно-желтый и обусловлен присутствием пигментов: урохрома (темно-желтый), уробилина (бледно-розовый), уроэритрина (бледно-красный).

При патологии или приеме с пищей красящих веществ цвет мочи меняется. Бледно-желтая или почти бесцветная моча характерна для полиурии (сахарный и несахарный диабет), почечные заболевания.

Красная окраска бывает при гемоглобин- и миоглобинурии или от пищевых красителей, содержащихся в конфетах, чернике, смородине, свекле и т.д. Коричнево-темный цвет наблюдается при алкаптонурии или меланинурии.

Зелено-синяя окраска отмечается при бактериальном загрязнении мочи или избытке в ней индикана, который превращается в синее индиго.

Желто-зеленая окраска (цвет пива) мочи обусловлена присутствием в ней желчных кислот и пигментов.

в. Оценка прозрачности мочи. Прозрачность мочи оценивается визуально. В норме моча прозрачна; при стоянии из нее осаждается рыхлая слизистая масса, состоящая из слущенного эпителия мочевых путей и слизистых телец.

Помутнение мочи может быть вызвано присутствием в ней избытка солей (ураты, фосфаты, оксалаты, карбонаты) или слизи, гноя, микробов и слущенных клеток.

г. Определение запаха мочи. В норме запах мочи ароматический, напоминающий запах мясного бульона или миндаля. Пахучие пищевые вещества или лекарства могут придавать моче свойственный им запах. Загнившая моча имеет запах аммиака, при разложении клеток в мочевых путях моча приобретает гнилостный запах, а присутствие большого количества кетоновых тел (сахарный диабет) придает ей плодовый запах.

д. Исследование плотности мочи. Стеклянный цилиндр ставят строго вертикально и наливают в него мочу. Если образуется пена, ее снимают фильтровальной бумагой. Осторожно погружают в мочу сухой урометр так, чтобы он свободно плавал, не касаясь стенок цилиндра, и производят отсчет по отметке шкалы урометра, совпадающей с нижним мениском жидкости.

Измеряют температуру мочи.

По шкале урометра сразу находят плотность мочи (в кг/л), но так как он откалиброван при определенной температуре (чаще всего при 15?С), необходимо внести поправку на температуру мочи. Для этого на каждые 3?С выше 15?С прибавляют по 0,001 кг/л к измеренной плотности и, наоборот, если температура ниже 15?С,на каждые 3?С вычитают по 0,001 кг/л.

е. Определение рН мочи. Полоску универсальной индикаторной бумаги погружают в исследуемую мочу, вынимают ее и определяют по цветной шкале рН.

В норме рН мочи колеблется от 5,0 до 7,0. Сдвиг рН в кислую сторону отмечается при выделении ацетоновых тел (сахарный диабет, голодание) или при тяжелой недостаточности почек. Смещение рН в щелочную сторону наблюдается при употреблении с пищей гидрокарбонатов, щелочных минеральных вод, молочно-растительных продуктов, воспалении слизистой мочевого пузыря и после длительной рвоты.

Оформление работы. Занести полученные данные анализа в тетрадь, сделать вывод о характерных изменениях и указать причины.

Работа 96. Определение кетоновых тел и глюкозы в моче

К кетоновым (ацетоновым) телам относятся ацетон, ацетоуксусная и в-гидроксимасляная кислоты.

Реактивы. Нитропруссид натрия, 10%-ный раствор свежеприготовленный; уксусная кислота, конц.; гидроксид натрия, 10%-ный раствор; хлорид железа (III), 10%-ный раствор.

Оборудование. Глазные пипетки; штатив с пробирками; набор «Глюкотест».

Материал. Моча, нормальная и патологическая.

а. Проба Легаля на ацетон и ацетоуксусную кислоту мочи. Метод основан на способности ацетона и ацетоуксусной кислоты в щелочной среде образовывать с нитропруссидом натрия комплексы оранжево-красного цвета, а при подкислении раствора - соединений вишнево-красного цвета.

Ход определения. В одну пробирку вносят 10 капель нормальной, в другую - 10 капель патологической мочи и добавляют в обе пробы по 2 капли раствора нитропруссида натрия и по 4 капли раствора гидроксида натрия. Появляется оранжево-красное окрашивание.

Вносят в обе пробирки по 10 капель концентрированной уксусной кислоты, при этом возникает вишнево-красное окрашивание.

Примечание. Креатинин мочи с нитропруссидом натрия также дает оранжево-красное окрашивание, но при добавлении концентрированной уксусной кислоты жидкость окрашивается в желтый цвет.

б. Проба Герхарда на ацетоуксусную кислоту мочи. Метод основан на взаимодействии железа с енольной формой ацетоуксусной кислоты с образованием комплекса красно-фиолетового цвета.

Ход определения. В одну пробирку вносят 20 капель нормальной, а в другую - 20 капель патологической мочи и прибавляют по 5 капель раствора хлорида железа (III) в обе пробы. Развивается красно-фиолетовое окрашивание.

в. Экспресс-тест на ацетон мочи.

Ход определения. На каждую из таблеток наносят по 2 капли нормальной и патологической мочи. Через 2 мин сравнивают окраску таблеток с цветной шкалой, приложенной к набору. При отсутствии ацетона окраска не развивается.

г. Определение глюкозы в моче с помощью набора «Глюкотест». Метод основан на визуальной оценке изменения цвета красителя (о-толидин), которым пропитана полоска бумаги «Глюкотест»; по цветной шкале устанавливают примерное содержание глюкозы в моче.

Ход определения. Одну полоску бумаги «Глюкотест» смачивают нормальной, а другую - патологической мочой. Сравнивают через несколько минут окраску полосок с цветной шкалой, имеющейся в комплекте. Содержание глюкозы в моче определяют по наиболее совпадающему со шкалой цвету полоски.

Оформление работы. Результаты занести в таблицу.

Исследуемая моча

Название пробы

Выявляемое вещество

Результат

Сделать вывод о присутствии ацетоновых тел и глюкозы в образцах нормальной и патологической мочи и указать на вероятные их причины.

Практическое значение работы. В норме пробы на ацетоновые тела и глюкозу в моче отрицательны.

Одновременное выделение ацетоновых тел и глюкозы с мочой наблюдается наиболее часто при сахарном диабете, реже при действии глюкокортикоидов (стероидный диабет), соматотропина и кортикотропина. Глюкозурия без ацетонурии имеет место при употреблении большого количества углеводов с пищей, а ацетонурия без глюкозурии - при голодании.

Работа 97. Определение белка в моче по методу Бранденберга-Робертса-Стольникова

Реактивы. Азотная кислота, конц.

Оборудование. Штатив с пробирками; пипетка для концентрированных кислот; пипетка вместимостью 2 мл.

Материал. Моча, нормальная и патологическая*.

Метод основан на пробе Геллера, состоящей в том, что при наслаивании мочи, содержащей белок, на концентрированную азотную кислоту образуется мутное белое кольцо денатурированного белка. Экспериментально установлено, что растворы, содержащие 0,033 г/л белка, дают это кольцо между 2-й и 3-й минутами после наслаивания.

Ход определения. Проводят пробу Геллера с нормальной и патологической мочой, для чего вносят в пробирку 20 капель концентрированной азотной кислоты и осторожно из пипетки наслаивают мочу. Если в моче содержится белок, то через 2-4 мин образуется белая муть в виде кольца.

Мочу с положительной пробой Геллера используют для количественного определения белка, для чего готовят разведение мочи. В пять пробирок наливают по 2 мл дистиллированной воды. В первую вносят 2 мл мочи, перемешивают и отбирают 2 мл смеси и переносят во вторую и т.д. Из последней пробирки 2 мл набранной жидкости отбрасывают. Получается моча, разведенная в 2, 4, 8, 16 и 32 раза.

В другие пять пробирок отмеривают по 2 мл концентрированной азотной кислоты и осторожно с помощью пипетки наслаивают на кислоту соответствующую пробу разведенной мочи.

Отмечают максимальное разведение мочи, при котором появляется мутное колечко между второй и третьей минутами.

Расчет. Найденное разведение мочи умножить на 0,033 г/л. Например, кольцо денатурированного белка образовалось в четвертой пробирке, где разведение равно 16. Следовательно, содержание белка в исследуемой моче 0,033·16 = 0,528 г/л.

Оформление работы. Рассчитать содержание белка в патологической моче и указать на использование метода в практике.

Работа 98. Качественное определение индикана в моче

Реактивы. Свинца ацетат (100 г/л); железо хлорное; кислота соляная концентрированная, пл. 1,19; реактив Обермейера; 0,2-0,4 хлорного железа и 100 мл концентрированной соляной кислоты; хлороформ.

Материал. Моча свежевыпущенная.

Принцип метода основан на способности индикана с реактивом Обермейера в присутствии хлороформа окрашиваться в синий или красный цвет.

Ход определения. 1 мл мочи смешивают с раствором ацетата свинца в отношении 1:10, фильтруют. Смешивают 1-2 мл фильтрата с реактивом Обермейера в соотношении 1:1, прибавляют 0,5-1,0 мл хлороформа и опрокидывают пробирку несколько раз. Если слой хлороформа окрашивается в синий или красный цвет, то проба положительная.

Оформление работы. По полученному окрашиванию сделать вывод о возможности использования данной реакции в диагностике патологических процессов.

Практическое значение работы. В норме индикан содержится в моче в незначительном количестве и не обнаруживается качественными пробами. Индиканурия встречается при интенсивном гниении белковых веществ в кишечнике, а также при усиленном распаде белков в организме.

Работа 99. Обнаружение некоторых пигментов в моче

Реактивы. Бензидин, 1%-ный раствор в 32%-ной уксусной кислоте; пероксид водорода, 3%-ный раствор; иод, 1%-ный спиртовой раствор.

Оборудование. Штатив с пробирками; пипетки вместимостью 5 мл.

Материал. Моча, нормальная и патологическая*.

а. Бензидиновая проба на кровяные пигменты в моче. Принцип метода см. работу 9, а.

В одну пробирку вносят 5 капель нормальной, а в другую - патологической мочи и добавляют по 3 капли бензидинового реактива и раствора пероксида водорода. При наличии пигментов появляется сине-зеленая окраска.

б. Проба Розина на желчные пигменты в моче. Метод основан на образовании из билирубина под действием иода биливердина, окрашенного в зеленый цвет.

Ход определения. В одну пробирку вносят 5 мл нормальной, а в другую патологической мочи и осторожно наслаивают раствор иода. Если в моче присутствует билирубин, на границе двух жидкостей появляется зеленое кольцо.

МЕТАБОЛИЗМ КСЕНОБИОТИКОВ

Метаболизм ксенобиотиков осуществляется с участием ферментов, содержащихся в тканях и жидкостях организма. Их состав определяет специфичность превращения любого чужеродного соединения. Метаболизм ксенобиотиков зависит от пути поступления их в организм. В пищеварительном тракте возможен гидролитический распад чужеродных веществ, в биологических жидкостях они подвергаются и некоторым другим превращениям (оксидоредукции, конъюгации), а в клетках происходят самые разнообразные реакции биотрансформации ксенобиотиков (см. учебник, с.444-455).

Наиболее активно ферментативные превращения ксенобиотиков осуществляются в клетках печени. Среди них следует отметить реакции окисления веществ, осуществляемые монооксигеназной ферментативной системой мембран эндоплазматической сети (микросом) печени. В микросомальной цепи протекают окислительные реакции двух типов: реакции гидроксилирования природных (аутобиогенных) и чужеродных соединений и реакции пероксидного окисления ненасыщенных жирных кислот (А.И.Арчаков, 1975).

Для исследования метаболизма ксенобиотиков возможны два подхода:

определение состава и содержания метаболитов введенных ксенобиотиков в биологических жидкостях и экскретах;

определение активности ферментов, участвующих в превращении ксенобиотиков, и изучение кинетики действия данных ферментов на различные соединения.

В экспериментах применяют оба подхода; в клинике метаболизм лекарственного средства оценивают, как правило, по содержанию в биологических жидкостях изучаемого вещества и его продуктов обмена.

1. Исследование процессов окисления и конъюгации ксенобиотиков

Работа 100. Выявление дыхательной активности микросом

Дыхание микросом - процесс окисления веществ кислородом с образованием воды - можно изучать или по скорости потребления кислорода, или по использованию восстановленного НАДФ, или НАД, участвующих в этих реакциях.

Реактивы. Хлорид калия, 1,15%-ный раствор; трис-буфер, 0,1 М раствор с рН 7,4*; хлорид кальция, 0,04 М раствор; НАДФ·Н, 1,0 мМ раствор, свежеприготовленный; НАД·Н, 1,0 мМ раствор, свежеприготовленный.

Оборудование. Пипетки вместимостью 0,1; 1; 5; 10 мл; штатив с пробирками; стеклянные палочки; чашки Петри; мерный цилиндр вместимостью 25 мл; фильтровальная бумага; шприц с иглой; гомогенизатор с пестиком из тефлона; аптечные весы с разновесами; моторчик для гомогенизации; флуороскоп; центрифуга ЦЛР.

Материал. Печень (свежая) забитого животного.

а. Выделение микросомальной фракции из печени крысы. Метод основан на разной скорости осаждения субклеточных частиц печени при центрифугировании в зависимости от их размера и плотности. Для уменьшения фактора осаждения микросом добавляется хлорид кальция, вызывающий их преципитацию.

Ход определения. После забоя животного печень отмывают от крови раствором хлорида калия из шприца, обсушивают ее фильтровальной бумагой и помещают в чашку Петри, стоящую на льду.

3 г ткани печени измельчают ножницами и переносят в стакан гомогенизатора, куда предварительно наливают 9 мл охлажденного раствора хлорида калия. Стакан помещают в лед и размельчают ткань с помощью тефлонового пестика при 1000 об/мин, делая 15-20 движений стаканом вверх-вниз.

Гомогенат разливают в две центрифужные гильзы и центрифугируют на ЦЛР при 10000g в течение 20 мин при 0-4?С. Надосадочную жидкость сливают в другие центрифужные гильзы, прибавляют к ней раствор хлорида кальция в соотношении 1:5 по объему. Перемешивают и вновь центрифугируют при 3000g в течение 15 мин при 0-4?С.

Надосадочную жидкость сливают. К осадку, содержащему обогащенную фракцию микросом, добавляют 3 мл раствора трис-буфера и с помощью пипетки, втягивая и выдувая жидкость, получают взвесь микросом.

б. Обнаружение дыхательной активности микросом печени флуориметрическим методом. Метод основан на наблюдении за скоростью падения флуоресценции НАДФ·Н или НАД·Н в процессе их окисления препаратами микросом.

Ход определения. В две пробирки наливают по 2,8 мл трис-буфера. Затем в одну из них добавляют 0,1 мл полученной взвеси микросом, а в другую - 0,1 мл дистиллированной воды (контрольная проба).

Ставят обе пробирки в штатив предварительно включенного флуороскопа, вносят в них по 0,1 мл раствора НАДФ·Н или НАД·Н и быстро перемешивают стеклянной палочкой.

Наблюдают за изменением флуоресценции в обеих пробах.

Оформление работы. По изменению флуоресценции указать на наличие дыхательной функции микросом.

Практическое значение работы. Выделение микросом используется в научных исследованиях для изучения их функций, в том числе дыхательной, при различных физиологических состояниях и при патологии, а также для исследования действия лекарств и ядов.

Работа 101. Исследование окислительного N-деметилирования в микросомах печени по Нашу

Реактивы. Гидроксид натрия, 3%-ный раствор; биуретовый реактив*; трис-буфер, 0,1 М раствор с рН 7,4*; НАДФ·Н, 1 мМ раствор, свежеприготовленный; хлорид магния, 2,5 мкМ раствор; амидопирин, 80 мМ раствор; сульфат цинка, 25%-ный раствор; гидроксид бария, насыщенный раствор; реактив Наша*.

Оборудование. Штатив с пробирками; пипетки вместимостью 0,1; 1; 2 и 5 мл; спектрофотометр.

Материал. Взвесь микросом печени, полученная в работе 85, а.

Метод основан на измерении содержания в среде формальдегида, образующегося при окислительном N-деметилировании амидопирина в микросомах:

Формальдегид дает с реактивом Наша комплекс желтого цвета.

Ход определения. Проверяют содержание белка в микросомальной фракции, для чего помещают в пробирку 0,05 мл взвеси микросом, добавляют 3,95 мл раствора гидроксида натрия и 0,2 мл биуретового реактива. Смесь перемешивают и через 30 мин измеряют экстинкцию опытной пробы против контрольной (4 мл раствора NaOH и 0,2 мл биуретового реактива) на СФ при 330 нм в кювете с толщиной слоя 1 см. Экстинкции 0,30-0,60 примерно соответствует содержание белка 2-4 мг в 0,1 мл взвеси микросом. Если экстинкция выше, то необходимо взвесь микросом разбавить трис-буфером так, чтобы получилась нужная концентрация белка.

В опытную и контрольную пробирки вносят по 0,4 мл растворов трис-буфера и хлорида магния, по 0,2 мл НАДФ·Н и по 0,1 мл взвеси микросом. Перемешивают содержимое пробирок.

В опытную пробу добавляют 0,11 мл раствора амидопирина, а в контрольную - сначала по 0,25 мл растворов сульфата цинка и гидроксида бария, а затем 0,11 мл амидопирина. Содержимое перемешивают.

Помещают обе пробирки на 20 мин в водяную баню при 37?С, периодически встряхивая пробы. По окончании инкубации реакцию в опытной пробе останавливают, добавив по 0,25 мл растворов сульфата цинка и гидроксида бария. Содержимое перемешивают.

Центрифугируют обе пробы при 3000 об/мин в течение 10 мин.

Отбирают по 1 мл надосадочной жидкости в две другие пробирки и приливают в них по 2 мл реактива Наша. Ставят пробы на 45 мин в водяную баню при 37?С.

Измеряют экстинкцию опытной пробы против контрольной на СФ при 412 нм в кювете с толщиной слоя 1 см.

Расчет проводят по формуле:

аV1,71·333

х = -------------------- ,

20·0,1·1000

где х - скорость N-деметилирования амидопирина, мкмоль/(мин·кг печени);

а - количество формальдегида, найденное по калибровочному графику (рис.12), нмоль;

V - объем взвеси микросом в трис-буфере, мл;

1,71 - объем инкубационной смеси, мл;

0,1 - объем взвеси микросом, взятый на исследование, мл;

20 - время инкубации, мин;

333 - коэффициент пересчета на 1 кг ткани печени;

1000 - коэффициент пересчета нмоль в мкмоль.

Оформление работы. Рассчитать скорость микросомального окисления амидопирина. В выводе указать на значение этого процесса.

Практическое значение работы. Исследование окисления ксенобиотиков монооксигеназной цепью микросом дает возможность оценить функцию этого процесса в норме и патологии, а также изучить особенности превращения различных соединений, токсичность и действие их продуктов на организм.

Работа 102. Определение гидроксилазной активности микросом печени по Като и Жилете

Реактивы. Трис-HCl буфер, 0,08 М раствор с рН 7,4*; хлорид магния, 0,16 М раствор; анилин перегнанный, 0,03 М раствор; трихлоруксусная кислота, 15%-ный раствор; карбонат натрия, 10%-ный раствор; фенол, 2%-ный раствор в 0,2 М растворе гидроксида натрия; НАДФ•Н, 0,03 М раствор; биуретовый реактив*; гидроксид натрия, 3%-ный раствор; реактивы для выделения микросом, как в работе 86; 4-аминофенол, свежеприготовленный раствор для построения калибровочного графика. (5,45 мг/л).

Оборудование. Штатив с пробирками; пипетки вместимостью 0,1; 0,2; 1 и 5 мл; водяная баня; лабораторная центрифуга с центрифужными весами; центрифуга рефрижераторная ЦЛР; ФЭК типа КФК-2 или спектрофотометр.

Материал. Печень животного после забоя.

Метод основан на определении содержания 4-аминофенола, образующегося при гидроксилировании анилина в монооксигеназной цепи микросом и с участием цитохрома Р450:

4-аминофенол при взаимодействии с фенолом и в присутствии карбоната натрия образует окрашенный индофенольный комплекс синего цвета:

Ход определения. Выделяют фракцию микросом печени, как указано в работе 100, затем определяют содержание белка в полученной микросомальной фракции; для этого отбирают 0,05 мл взвеси микросом в пробирку, добавляют 3,95 мл раствора гидроксида натрия и 0.2 мл биуретового реактива.

Перемешивают содержимое стеклянной палочкой и через 30 мин измеряют экстинкцию этого раствора против контрольного (4 мл гидроксида натрия и 0,2 мл биуретового реактива) на ФЭКе и СФ при 330 нм в кювете с толщиной слоя 1 см. Рассчитывают концентрацию белка по калибровочному графику (содержание белка в 0,1 мл взвеси микросом должно составлять примерно 2-4 мг).

Для изучения гидроксилирования анилина берут две чистые пробирки и готовят контрольную и опытную пробы. Последовательность внесения компонентов и их объем приведены в таблице.

Контроль

Опыт

вещество

объем

вещество

объем

Трис-HCI буфер

0,4

Трис-HCI буфер

0,4

Хлорид магния

0,4

Хлорид магния

0,4

Взвесь микросом

0,1

НАДФ•Н

0,2

Трихлоруксусная кислота

0,5

Взвесь микросом

0,1

Анилин

0,11

Анилин

0,11

НАДФ•Н

0,2

Обе пробирки помещают на 20 мин в водяную баню при 37?С, после чего в опытной пробе останавливают реакцию, приливая 0,5 мл трихлоруксусной кислоты. Далее обе пробы центрифугируют 10 мин при 3000 об/мин.

Отбирают из каждой пробы по 1 мл надосадочной жидкости, переносят их в две другие пробирки. Затем приливают к ним по 0,5 мл карбоната натрия и по 1,5 мл раствора фенола. Перемешивают содержимое встряхиванием.

Для развития окраски пробирки помещают на 30 мин в водяную баню при 37?С. Затем измеряют экстинкцию опытной пробы против контрольной на ФЭКе или СФ при 630 нм (светофильтр красный).

Серию растворов для построения калибровочного графика готовят согласно таблице.

№ пробирки

4-аминофенол, мл

Вода, мл

Nа2СО3, мл

Фенол, мл

Содержание 4-аминофенола в пробе, нмоль

1

0,1

0,9

0,5

1,5

5,0

2

0,2

0,8

0,5

1,5

10,0

3

0,3

0,7

0,5

1,5

15,0

4

0,4

0,6

0,5

1,5

20,0

5

0,5

0,5

0,5

1,5

25,0

6

0

1,0

0,5

1,5

0 (контроль)

Затем пробирки ставят на 30 мин в водяную баню при 37?С. Измеряют экстинкцию проб против контроля, как описано выше, и строят калибровочный график.

Расчет проводят по формуле

АV

х = ------ ,

20m

где х - гидроксилазная активность нмоль/(мин•мг белка);

А - содержание 4-аминофенола в пробе, найденное по калибровочному графику, нмоль;

V - объем пробы, равный 1,71 мл;

20 - время инкубации, мин;

m - содержание белка в пробе, мг.

Практическое значение работы. Для изучения функции микросомальной цепи окисления печени в норме и особенно при патологических состояниях используют различные методические подходы. В частности, исследования проводят с разными субстратами, превращение которых происходит на цитохроме Р450. При взаимодействии с цитохромом Р450 разные субстраты дают неодинаковые спектры поглощения. По этому признаку их условно делят на субстраты I типа (к ним относятся, например, амидопирин, бензфетамин, этилморфин и др.) и II типа (анилин), что связано, возможно, с некоторыми различиями в механизме гидроксилирования данных соединений.

Скорость реакций гидроксилирования изменяется при действии многих внешних факторов (радиации, гипероксии, гипоксии, интоксикации четыреххлористым углеродом и т.д.), под влиянием ряда регуляторов (витаминов, гормонов). Для получения более полной информации о деятельности гидроксилазной активности микросом печени при действии многих факторов и при патологии используют разные ксенобиотики - субстраты цитохрома Р450.

Работа 103. Метод оценки активности монооксигеназ эндоплазматической сети клеток печени по выделению метаболитов амидопирина с мочой по Т.А. Попову и О.Д. Леоненко

Метаболизм амидопирина осуществляется с помощью ферментативных реакций окисления и конъюгации. Первая из них (N-деметилирование) катализируется монооксигеназной ферментной системой эндоплазматической сети печени по уравнению

Далее 4-аминоантипирин с участием соответствующей N-ацетилтрансферазы и ацетил-КоА подвергается ацетилированию:

Реактивы. Фенол перекристаллизованный, 0,02%-ный раствор; аммиачный буфер с рН 10,5-10,6 (20 г хлорида аммония растворяют в 100 мл 25%-ного раствора аммиака); трихлоруксусная кислота, 12,5%-ный раствор; соляная кислота, 36%-ная; гексацианоферрат (III) калия, 1%-ный раствор; 4-аминоантипирин, свежеприготовленный стандартный раствор 1 мг/мл для построения калибровочного графика.

Оборудование. Штатив с пробирками; пипетки вместимостью 0,2; 1; 2 и 5 мл; пробирки, обернутые фольгой; воронки с бумажными фильтрами; воронки со стеклянным мелкопористым фильтром; водяная баня; ФЭК или спектрофотометр.

Материал. Моча, содержащая метаболиты амидопирина. Для получения мочи белым крысам внутрибрюшинно вводят раствор амидопирина из расчета 20 мг на 1 кг массы тела, затем отсаживают их в стеклянные выделительные воронки и собирают мочу в мерные цилиндры в течение 12 или 24 ч. Перед исследованием мочу фильтруют через бумажные фильтры.

Метод основан на способности 4-аминоантипирина, являющегося метаболитом амидопирина, при взаимодействии с фенолом в щелочной среде и в присутствии гексацианоферрата (III) калия образовывать соединение типа индофенола, имеющее розовую окраску.

Ход определения. В две пробирки вносят по 1,5 мл профильтрованной мочи. В первую (для определения свободного 4-аминоантипирина) приливают 0,3 мл аммиачного буфера, а во вторую (для определения суммы метаболитов, т.е. 4-аминоантипирина и N-ацетил-4-аминоантипирина) 0,3 мл соляной кислоты. Перемешивают пробы, осторожно встряхивая пробирки.

Содержимое первой пробирки через 15 мин фильтруют через бумажный фильтр; вторую пробирку закрывают пробкой, обернутой фольгой, и помещают на 15 мин в кипящую водяную баню, после чего сразу охлаждают пробу в воде со льдом до комнатной температуры. Охлажденный гидролизат фильтруют через мелкопористый стеклянный фильтр в другую пробирку.

Отбирают из первой пробы 0,6 мл фильтрата в чистую пробирку и добавляют последовательно 0,5 мл раствора трихлоруксусной кислоты, 2 мл раствора фенола и 0,1 мл раствора гексацианоферрата (III) калия. Содержимое перемешивают и через 10 мин (но не позже чем через час) измеряют экстинкцию опытной пробы на ФЭКе (светофильтр зеленый) или на спектрофотометре при 510 нм в кювете с толщиной слоя 1 см против контрольной, содержащей все компоненты, кроме фенола, который заменяется 2 мл дистиллированной воды. Полученная экстинкция (Е1) соответствует содержанию в моче 4-аминоантипирина.

К профильтрованному гидролизату второй пробы приливают 0,6 мл аммиачного буфера, смесь перемешивают и вновь профильтровывают через бумажный фильтр. Отбирают в чистую пробирку 0,8 мл прозрачного фильтрата и добавляют последовательно 0,2 мл дистиллированной воды, 2 мл раствора фенола и 0,1 мл раствора гексацианоферрата (III) калия.

Содержимое пробирки перемешивают и через 10 мин (но не позже чем через час) измеряют экстинкцию второй опытной пробы на ФЭКе или на спектрофотометре при тех же условиях, что и для первой пробы. Полученное значение экстинкции (Е2) соответствует содержанию в моче суммы метаболитов (4-аминоантипирин и N-ацетил-4-аминоантипирин).

Расчет. Содержание метаболитов амидопирина в моче и показатели активности ферментных систем печени, участвующих в превращении ксенобиотиков, рассчитывают по калибровочному графику. Для его построения в 5 пробирок вносят соответственно 0,05; 0,1; 0,2; 0,3 и 0,4 мл стандартного раствора 4-аминоантипирина. Затем в каждой пробирке доводят общий объем пробы до 5 мл дистиллированной водой и приливают в них по 1 мл аммиачного буфера. Содержимое перемешивают, фильтруют, отбирают в другие пробирки по 0,6 мл фильтрата и обрабатывают его так же, как и при определении свободного 4-аминоантипирина в моче (первая опытная проба). Полученные значения экстинкции соответствуют концентрации 4-аминоантипирина 5, 10, 20, 30 и 40 мкг/л (примерный калибровочный график показан на рис. 13).

По Е1 находят общее количество выделенного 4-аминоантипирина, умножая содержание его в пробе на суточный объем мочи (в мл).

По Е2 определяют аналогичным образом сумму метаболитов амидопирина, выделенных за сутки с мочой.

Относительную активность монооксигеназы печени рассчитывают в % от введенного количества амидопирина по формуле

А100%

------------

В

где А - сумма метаболитов, выделенных с мочой за сутки;

В - количество введенного животному амидопирина.

Ацетилирующую активность ферментных систем организма х (в %) находят по формуле

(Е2 - Е1)100%

х = --------------

Е1

где Е1 и Е2 - соответствующие экстинкции опытных проб.

Оформление работы. Рассчитать относительную активность ферментных систем N-деметилирования и ацетилирования у исследуемых животных и сделать вывод о практическом значении данного теста.

Практическое значение работы. Обстоятельное изучение ферментов печени, осуществляющих реакции гидроксилирования многих соединений и их конъюгацию, открывает возможности косвенной оценки активности изучения состава и соотношения метаболитов разных ксенобиотиков, поступающих в организм. Демонстративность и относительная простота выполнения позволяют использовать эти тесты не только в эксперименте, но и в клинической практике для выявления ранних нарушений различных токсических веществ, производственных факторов и различных лекарств на ферментативные системы гидроксилирования и ацетилирования ксенобиотиков в организме.

Работа 104. Определение активности алкогольдегидрогеназы в сыворотке крови по Шкурски и др. с дополнениями И.В. Бокия, М.С. Усатенко и В.Ф. Трюфанова

Реактивы. Пирофосфатный буфер, 0,1 М раствор, рН 8,5*; n-нитрозодиметиланилин, 26 мкМ раствор*; н-бутанол, 0,25 М водный раствор; НАД+, свежеприготовленный раствор (3,3 мг НАД в 1 мл 0,25 М раствора бутанола).

Оборудование. Пипетки на 0,1; 1 и 2 мл; стеклянные палочки; секундомер; спектрофотометр.

Материал. Сыворотка крови.

Метод основан на способности алкогольдегидрогеназы (АДГ) катализировать две последовательные реакции: НАД-зависимое окисление бутанола и восстановление n-нитрозодиметиланилина с участием НАД•Н2, образовавшимся в ходе первой реакции. При этом n-нитрозодиметиланилин, имеющий в растворе интенсивно желтую окраску, обесцвечивается. Об активности АДГ судят по скорости светопоглощения красителя, которое регистрируют на спектрофотометре при 440 нм.

Ход определения. Спектрофотометр подготавливают к работе, устанавливают рабочую длину волны на 440 нм и стрелку шкалы отсчета с помощью рукоятки на «нуль» при закрытой шторке.

В кювету спектрофотометра помещают 2 мл раствора n-нитрозодиметиланилина и 0,5 мл сыворотки крови. Против этой кюветы рукояткой «щель» устанавливают шкалу отсчета на 0,300, после чего реакцию запускают добавлением в кювету 0,1 мл раствора НАД в растворе бутанола. Смесь быстро перемешивают стеклянной палочкой. Регистрируют снижение экстинкции инкубационной среды в течение 2 мин при 25?С.

Примечание. Определение активности АДГ в каждом образце сыворотки проводят дважды, а при расхождении результатов измерения более чем на 10% - три раза. После этого вычисляют среднее значение изменения экстинкции за 1 мин.

Расчет производится по формуле

х = 320,5?Е ,

где х - активность АДГ, мкмоль/(мин•л);

320,5 - коэффициент расчета активности, выраженный в мкмолях превращенного субстрата при указанных условиях инкубации;

?Е - изменение экстинкции при 440 нм за 1 мин.

Если изменение экстинкции при 440 нм превышает 0,050 за 1 мин, то сыворотку крови следует развести натрий-фосфатным буфером в 2-4 раза. Измеренную величину активности умножить на фактор разведения.

Для определения активности АДГ рекомендуется брать свежеполученную сыворотку крови. При хранении активность фермента снижается, поэтому значение активности, измеренной после хранения, следует умножить на соответствующий коэффициент, установленный эмпирически:

Время хранения сыворотки, сут.

0

1

2

3

4

5

6

7

Коэффициент:

при 4?С

1,00

1,03

1,04

1,09

1,11

1,12

1,15

1,17

при 20?С

1,00

1,18

1,20

1,43

1,47

1,54

1,66

2,38

Оформление работы. Сравнить полученное значение активности АДГ с нормой и сделать соответствующие выводы.

Практическое значение работы. Алкогольдегидрогеназа не проявляет абсолютной субстратной специфичности. Этот фермент катализирует окисление, помимо этанола, ряда первичных и вторичных спиртов, этиленгликоля и т.д., причем в некоторых случаях с большей скоростью, чем этанола. АДГ содержится в гиалоплазме клеток многих органов и тканей, но в ткани печени ее активность в 20-40 раз выше, чем в других. В сыворотке крови концентрация фермента у здоровых людей очень низка и традиционными методами практически не выявляется. Описанный метод позволяет определить активность АДГ. У здоровых людей активность АДГ в сыворотке крови регистрируется в пределах 0,32-2,56, а в среднем 1,18 мкмоль/мин•л. У лиц, злоупотребляющих алкоголем, активность фермента в сыворотке крови повышается в зависимости от длительности приема алкоголя и стадии алкоголизма. Тест на алкогольдегидрогеназу сыворотки крови используется в диагностике алкоголизма и контроля эффективности лечения этого заболевания.

Низкая активность АДГ при поражениях печени, в которой окисляется до 90% поступающего в организм этанола и других спиртов, или генетическая недостаточность этого фермента снижает обезвреживание алкоголя и усугубляет его отрицательное действие на функции систем организма.

Работа 105. Определение ацетилирующей способности организма по выделению с мочой свободной и ацетилированной форм сульфаниламидов по А.М. Тимофеевой в модификации Г.А. Пономарева

Процесс ацетилирования является одной из разновидностей реакций конъюгации ксенобиотиков, происходящих в клетках с участием ферментов. Ариламины, в том числе сульфаниламиды, подвергаются N-ацетилированию в организме и поэтому по выделению свободной и ацетилированной форм этих веществ можно оценить активность процесса ацетилирования.

Реактивы. Соляная кислота, 10%-ный раствор; нитрит натрия, 0,5%-ный раствор, свежеприготовленный; ацетат натрия, насыщенный раствор; Н-кислота ацетилированная, свежеприготовленный 0,5%-ный раствор.

Оборудование. Водяная баня; штатив с пробирками; пробки, обернутые фольгой; пипетки вместимостью 1 и 5 мл; ФЭК.

Материал. Моча, содержащая свободный и ацетилированный сульфаниламиды. (Для получения мочи белым крысам вводят внутрижелудочно с помощью зонда порошок сульфадимезина из расчета 0,5 г на 1 кг массы тела в виде взвеси в 3 мл воды. Животных отсаживают на сутки в стеклянные выделительные воронки для сбора мочи. Собранную мочу доводят дистиллированной водой до объема 25 мл и фильтруют через бумажный фильтр).

Метод основан на способности диазотированного сульфаниламида при взаимодействии с ацетилированной Н-кислотой (1,6-аминооксинафталин-3,5-дисульфокислота) образовывать комплекс розового цвета, интенсивность которого пропорциональна концентрации сульфаниламида.

Содержание суммы сульфаниламидов (ацетилированных и свободных) в моче устанавливают после гидролиза проб с соляной кислотой, в ходе которого происходит образование свободной формы сульфаниламида из ацетилированной.

Ход определения. В две пробирки (одна для определения общего, а другая - свободного сульфадимезина) отмеривают по 1 мл разведенной в 20 раз мочи, по 1,5 мл дистиллированной воды и по 0,25 мл раствора соляной кислоты. В третью пробирку (контрольная) вносят 2,5 мл воды и 0,25 мл раствора соляной кислоты.

Одну пробирку (для определения общего сульфадимезина) закрывают пробкой, обернутой фольгой, и ставят на гидролиз в кипящую водяную баню на 15 мин. Затем пробирку охлаждают.

Во все три пробирки приливают по 2 капли раствора нитрита натрия, тщательно перемешивают содержимое и оставляют стоять 10 мин. Добавляют во все пробы по 1,5 мл насыщенного раствора ацетата натрия, закрывают пробирки пробками и энергично встряхивают их несколько раз.

Прибавляют во все пробирки по 0,25 мл раствора ацетилированной Н-кислоты. Вновь перемешивают содержимое и оставляют стоять пробы на 15 мин для развития окрашивания.

Измеряют экстинкцию опытных проб против контроля на ФЭКе при 440 нм (светофильтр синий) в кювете с толщиной слоя 0,5 см.

Расчет проводят по формуле

(Е2 - Е1)100

х = -------------- ,

Е2

где х - ацетилирующая способность организма, % ацетилированного сульфадимезина

Е1 - экстинкция свободного сульфадимезина, содержащегося в пробе, не подвергшейся гидролизу;

Е2 - экстинкция общего сульфадимезина (свободный + ацетилированный), содержащегося в пробе, подвергнутой гидролизу.

Оформление работы. Занести значения экстинкции в тетрадь и рассчитать ацетилирующую способность организма по сульфадимезину. Сделать вывод о возможности метаболизма ксенобиотиков посредством ацетилирования и значении этого процесса.

Практическое значение работы. По степени ацетилирования сульфаниламидов или других ксенобиотиков, подвергающихся в организме ацетилированию, судят об активности ферментной системы ариламинацетилтрансферазы в клетках, которая катализирует реакции ацетилирования (конъюгации) различных соединений. Для сульфаниламидов реакция ацетилирования является основным ведущим механизмом конъюгации, другие конъюгаты для большинства сульфаниламидов образуются в незначительном количестве. Ацетилирование приводит к инактивации (обезвреживанию) сульфаниламидов и выведению их из организма с мочой. Поэтому степень ацетилирования сульфаниламидов указывает также на соотношение бактериостатически активной и неактивной форм препаратов. Чем быстрее ацетилируется сульфаниламид, тем меньше его бактериостатическая активность

Работа 106. Выявление ацетилирования (инактивации) гидразида изоникотиновой кислоты (ГИНК) в организме

Реактивы. Реактив метаванадата аммония*; соляная кислота, 0,5 М раствор.

Оборудование. Штатив с пробирками; пробки, обернутые фольгой; пипетки вместимостью 1 и 2 мл; водяная баня.

Материал. Моча, содержащая свободную и ацетилированную формы ГИНК. (Для получения мочи белым крысам вводят порошок ГИНК в дозе 100 мг на 1 кг массы тела в виде взвеси в 3 мл воды через рот с помощью специального зонда. Крыс отсаживают на 12 ч в стеклянные выделительные воронки для сбора мочи. Объем мочи доводят водой до 10 мл и фильтруют через бумажный фильтр).

Метод основан на выявлении свободной формы ГИНК, которая с метаванадатом аммония в кислой среде дает комплексное соединение коричнево-красного цвета. Разница в окраске между пробами мочи до и после гидролиза указывает на степень ацетилирования ГИНК в организме:

Ход определения. Собранную мочу разводят в 20 раз дистиллированной водой. В две пробирки вносят по 1 мл разведенной мочи; в одну из них (для определения общей ГИНК, т.е. суммы свободной и ацетилированной форм препарата) добавляют 1 мл раствора соляной кислоты, а во вторую (для выявления свободной ГИНК) - 1 мл дистиллированной воды.

Первую пробирку закрывают пробкой и ставят на 20 мин на кипящую водяную баню, после чего охлаждают под струей водопроводной воды. В обе пробирки приливают по 2 мл реактива метаванадата аммония и отмечают разницу в окрашивании исследуемых проб мочи.

Оформление работы. По разнице в окраске проб мочи дать примерную оценку степени ацетилирования ГИНК в организме и указать на значение этой реакции для практики.

Практическое значение работы. Реакция N-ацетилирования ГИНК осуществляется специальной ацетилтрансферазой, содержащейся в различных тканях организма. В зависимости от активности этого фермента у разных людей их делят на быстрых и медленных «инактиваторов» (ацетиляторов) ГИНК, что имеет значение не только для практической фармакогенетики, но и для рациональной терапии. По степени ацетилирования ГИНК устанавливается эффективная индивидуальная доза препарата для конкретного больного.

1. Исследование пероксидного окисления липидов биологических мемебран

Пероксидное (перекисное) окисление липидов молекулярным методом представляет собой цепной свободно-радикальный процесс. Наиболее легко подобным образом окисляются ненасыщенные липиды или свободные жирные кислоты, входящие в состав фосфолипидов биологических мембран. Поэтому скорость пероксидного окисления липидов прежде всего оказывает влияние на функцию мембран и на развитие в них патологических изменений.

Зарождение этого процесса связывают с появлением в среде, например, пероксидного радикала НО2?, возникающего при окислении Fe2+ молекулярным кислородом:

Fe2+ + O2 + H+ > Fe3+ + HO2?

Пероксидный радикал может реагировать с молекулой ненасыщенного липида или свободной жирной кислоты (RH) биомембран. При этом образуется липидный радикал R?.

HO2? = RH >H2O2 + R

который запускает цепную реакцию окисления липидов (стадия инициирования, или зарождения цепей). Образование R? связано с отрывом атома водорода от углерода, находящегося в б-положении к двойной связи, например, в положениях 8, 11, 14 и 17 линоленовой кислоты:

Если радикал образуется при отрыве атома водорода в положении 11 или 14, то электрон неспаренной валентности делокализуется, что приводит к появлению молекул липида с двумя сопряженными двойными связями (диеновые конъюгаты), имеющих максимум поглощения при 233 нм.

В присутствии кислорода радикал R? дает новый свободный радикал липида - пероксидный RO2?.

Пероксидный радикал может взаимодействовать с новой молекулой жирной кислоты RH с образованием гидропероксида (гидроперекиси) липида ROOH и очередного липидного радикала R?;

Причем сопряженные двойные связи (диеновая конъюгация), отмеченные в формулах скобкой, сохраняются в гидропероксидах липидов, образующих при свободнорадикальном окислении таких полиненасыщенных жирных кислот, как линолевая, линоленовая, арахидоновая. Две последние реакции сохраняют присутствие радикалов RO2 и R в системе, обеспечивая продолжение цепного окисления липидов:

Подобная цепь пероксидного окисления липидов называется неразветвленной. Длина ее зависит от числа радикалов RO2?, которые «ведут» цепное окисление. Каждый радикал приводит к образованию нескольких молекул ROOH, по числу которых судят о длине неразветвленных цепей пероксидного окисления липидов. Следовательно, первичными продуктами пероксидного окисления липидов являются гидропероксиды липидов, среди которых определенный процент падает на диеновые конъюгаты.

При разложении накопившихся гидропероксидов липидов с участием Fe2+ появляется новый радикал - RO (оксидный радикал жирной кислоты, или алкоксидный радикал):

ROOH + Fe2+ > RO + OH? + Fe3+

Далее пероксидное окисление липидов развивается по разветвленному механизму

При этом накапливаются другие продукты пероксидного окисления липидов: спирты, кетоны, эпоксиды, альдегиды и диальдегиды и т.д. Среди диальдегидов представляет интерес малоновый диальдегид CH2(CHO)2, который образуется при свободнорадикальном окислении линоленовой и арахидоновой кислот, но не олеиновой или линолевой. Его определение служит одним из методов исследования пероксидного окисления липидов.

Пероксидное окисление фосфолипидов и ненасыщенных жирных кислот, входящих в состав биомембраны, может полностью разрушить ее липидную основу.

Однако этому препятствует взаимодействие радикалов R? и RO2 друг с другом, реакция тех же радикалов с Fe2+ и взаимодействие радикалов с антиоксидантами. При этом в первых двух реакциях образуются молекулярные продукты, а в третьей - малоактивные радикалы антиоксиданта, что вызывает обрыв цепей свободнорадикального окисления.

В клетках выделяют два типа пероксидного окисления липидов - ферментный и неферментный, которые отличаются рядом признаков. Ферментная система требует участия ферментного белка (поэтому в отличие от неферментной инактивируется нагреванием), пирофосфата, ионов железа и в качестве восстановителя НАДФ·Н (НАДФ·Н-зависимая ферментная система пероксидного окисления, НЗП). Неферментная система нечувствительна к нагреванию; она требует ионов железа и аскорбата в качестве восстановителя (аскорбат-зависимое неферментное пероксидное окисление, АЗП). Отличительным признаком этих двух систем служит чувствительность к ионам железа, пирофосфата и фосфата. Система НЗП имеет очень высокое сродство к ионам железа, поэтому достаточно следовых количеств их для протекания максимальной скорости реакций. Для тех же условий АЗП требует значительных концентраций ионов железа, которые добавляются в среду при исследовании этого процесса в клетках. Активность НЗП резко усиливается пирофосфатом и угнетается фосфатом, тогда как АЗП ингибируется обоими веществами.

Наиболее активны обе системы пероксидного окисления в мембранах микросом. Обнаружено также пероксидное окисление липидов, особенно АЗП, в митохондриях, лизосомах, мембранах эритроцитов и т.д.

Накопление таких продуктов пероксидного окисления, как гидропероксиды липидов, приводит к ингибированию многих ферментных белков и нарушает их функцию. Кетоны, альдегиды и диальдегиды образуют ковалентные внутримолекулярные и межмолекулярные связи («сшивки») и с функциональными группами белков и других биомолекул, что также ведет к изменениям клеточных функций.

Развитию свободнорадикальных реакций окисления липидов способствуют прооксиданты, а сдерживают его ингибиторы - антиоксиданты. К последним относятся б-токоферол, селен, некоторые гормоны (тироксин, стероидные) и т.д. От вредного действия гидропероксидов липидов клетку защищает ферментная система глутатионпероксидазы, разрушающая эти вещества.

Для исследования процессов пероксидного окисления липидов используются методы: а) определения продуктов пероксидного окисления липидов; б) регистрации свободных радикалов в ходе реакции; в) определения антиокислительной (антиоксидантной) активности тканей.

Первые два наиболее просты для выполнения и нашли широкое применение, в частности, метод определения наиболее изученного продукта пероксидного окисления - малонового диальдегида.

Работа 107. Определение чувствительности эритроцитов к пероксидному гемолизу

Реактивы. Фосфатный буфер, 1М раствор с рН 7,4*; хлорид натрия, 170 г/л раствор; рабочий свежеприготовленный раствор хлорида натрия, объем смеси доводят до 1 л и перед употреблением насыщают кислородом воздуха путем встряхивания; фосфатный буфер, 0,17 М раствор с рН 7,4х; раствор гидрохлорида натрия, приготовленный на фосфатном буфере (0,17 М фосфатный буфер и 1%-ный раствор NaCl в соотношении 1:3 по объему); изотонический спиртовой раствор эргокальциферола Д2 (продажный препарат 0,5%-ного спиртового раствора эргокальциферола разбавляют в 50 раз раствором гидрохлорида натрия на фосфатном буфере); аммиачный раствор (растворяют 1 мл концентрированного раствора аммиака в колбе вместимостью 250 мл); ацетат б-токоферола, 5%-ный масляный раствор.

Оборудование. Штатив с пробирками; пипетки вместимостью 0,1; 5 и 10 мл; стеклянные палочки; центрифуга с центрифужными весами; термостат, отрегулированный на 38?С; ФЭК или спектрофотометр.

Материал. Кровь, взятая из пальца.

а. Определение спонтанного гемолиза по Ягеру. Метод основан на определении при 540 нм экстинкции внеэритроцитарного гемоглобина, поступающего в среду вследствие спонтанного лизиса мембран эритроцитов, вызванного пероксидным окислением липидов кислородом воздуха.

Ход определения. В пробирку с 7,5 мл рабочего раствора хлорида натрия добавляют 0,1 мл крови. Готовят суспензию эритроцитов, втягивая и выдувая жидкость с помощью пипетки.

Центрифугируют взвесь 10 мин при 1000 об/мин, надосадочную жидкость осторожно отсасывают. К осадку эритроцитов добавляют 7,5 мл рабочего раствора хлорида натрия и вновь суспензируют тем же способом.

В три центрифужные пробирки наливают по 1 м приготовленной суспензии: в первые две пробирки прибавляют по 4 мл рабочего раствора хлорида натрия; а в третью - 4 мл дистиллированной воды (для полного гемолиза). Пробы перемешивают стеклянной палочкой и ставят на 2 ч в термостат при 38?С.

По окончании инкубации содержимое пробирок перемешивают, центрифугируют 10 мин при 1000 об/мин и измеряют экстинкцию всех проб против дистиллированной воды на ФЭКе или спектрофотометре при 540 нм (светофильтр зеленый) в кювете с толщиной слоя 1 см.

Расчет проводят по формуле

(Е1 + Е2)100

х = ----------------

2Е3

где х - степень гемолиза, %;

Е1 и Е2 - экстинкции первой и второй проб;

Е3 - экстинкция третьей пробы.

б. Исследование гемолитического действия витамина D2 (эргокальциферола) по В.Б.Спиричеву и Н.В.Блажеевич. Метод основан на определении при 540 нм экстинкции внеэритроцитарного гемоглобина, выход которого усиливается с помощью витамина D2, запускающего пероксидное окисление липидов в мембранах эритроцитов. б-токоферол как антиоксидант уменьшает гемолитическую активность эргокальциферола.

Ход определения. В три пробирки вносят по 0,1 мл крови. В одну предварительно наливают 4 мл изотонического раствора эргокальциферола (прооксидант), а в другую - тот же объем раствора эргокальциферола и 1 каплю раствора ацетата б-токоферола (антиоксидант), в третью - 4 мл раствора хлорида натрия на фосфатном буфере (контроль).

Суспензируют эритроциты во всех пробах, втягивая и выдувая жидкость с помощью пипетки, и оставляют стоять при 20-22?С. Через 30 мин пробы центрифугируют в течение 10 мин при 3000 об/мин, отбирают 0,1 мл надосадочной жидкости в три чистые пробирки и прибавляют в них по 5 мл аммиачного раствора.


Подобные документы

  • Работа и зона мощности, выполняемая спринтером бегуном в соревновательных условиях. Соотношение аэробных и анаэробных процессов в организме при ее выполнении. Биохимические изменения в мышцах, крови и моче спортсмена. Антиоксидантные системы организма.

    курсовая работа [448,4 K], добавлен 01.12.2013

  • Физико-химическая характеристика сточных вод. Связь структуры некоторых веществ, содержащихся в сточных водах коксохимического производства и их способность к биохимическому распаду. Технологические схемы биохимических установок для очистки стоков.

    курсовая работа [733,6 K], добавлен 12.05.2014

  • Гликозиды — органические соединения, история их изучения и свойства. Ботаническая, фармакологическая и химическая классификация. Образование гликозидов в растениях, их роль и методы выделения. Качественные реакции и количественное определение гликозидов.

    презентация [1,6 M], добавлен 02.12.2015

  • Характеристика химических свойств актинидов. Количественное определение трансплутониевых элементов. Отделение осаждением неорганическими и органическими реагентами. Методы выделения и разделения трансплутониевых элементов. Получение металлического урана.

    реферат [75,3 K], добавлен 03.10.2010

  • Методы фотометрического анализа. Количественное определение веществ в газовой хроматографии. Сущность амперометрического титрования. Природа происхождения атомных спектров. Типы радиоактивных превращений, используемых в радиометрических методах анализа.

    контрольная работа [222,2 K], добавлен 17.05.2014

  • Факторы, влияющие на скорость реакции: концентрация реагирующих веществ или давление, природа реагирующих веществ, температура процесса и наличие катализатора. Пример гомогенных и гетерогенных реакций. Принцип Ле Шателье. Распределение молекул по энергии.

    лекция [144,0 K], добавлен 22.04.2013

  • Методы окислительно-восстановительного титрования. Основные окислители и восстановители. Факторы, влияющие на окислительно-восстановительные реакции. Применение реакции окисления-восстановления в анализе лекарственных веществ. Растворы тиосульфата натрия.

    презентация [1,0 M], добавлен 21.10.2013

  • Способы выделения, очистки и анализа органических веществ. Получение предельных, непредельных и ароматических углеводородов, спиртов, карбоновых кислот. Получение и разложение фенолята натрия. Методы выделения белков. Химические свойства жиров, ферментов.

    лабораторная работа [201,8 K], добавлен 24.06.2015

  • Хроматографическая система - метод разделения и анализа смесей веществ. Механизм разделения веществ по двум признакам. Сорбционные и гельфильтрационные (гельпроникающие) методы. Адсорбционная, распределительная, осадочная и ситовая хроматография.

    реферат [207,8 K], добавлен 24.01.2009

  • Влияние природы газа-носителя и его параметров на качество разделения веществ. Основные требования к газу-носителю. Газовая хроматография с применением паров. Природа неподвижной жидкости. Полярные и неполярные соединения. Образование водородной связи.

    реферат [18,5 K], добавлен 10.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.