• Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа (551,9 K)
  • Основные задачи, решаемые методом координат. Действия над матрицами. Понятие минора и алгебраического дополнения. Собственные векторы и собственные значения линейного оператора. Действия с множествами. Геометрический смысл дифференциала функции.

    учебное пособие (1,1 M)
  • Случайная выборка значений двух случайных величин для исследования их совместного распределения. Диаграмма рассеяния опытных данных для четырех видов распределения. Вычисление коэффициента корреляции при большом объеме выборок; проверка его значимости.

    реферат (811,7 K)
  • Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.

    контрольная работа (68,7 K)
  • Адекватная линейная регрессионная модель. Правило проверки адекватности. Определение математического ожидания, коэффициента детерминации, множественного коэффициента корреляции по характеристикам случайных величин. Оценка дисперсии случайной ошибки.

    контрольная работа (160,0 K)
  • Характеристика экзогенных и эндогенных переменных. Теорема Гаусса-Маркова. Построение двухфакторного и однофакторных уравнения регрессии. Прогнозирование значения результативного признака. Оценка тесноты связи между результативным признаком и факторами.

    курсовая работа (575,5 K)
  • Обобщенные циклотомические последовательности. Цикломатические числа и их свойства. Метод расчета линейной сложности обобщенных циклотомических последовательностей. Примеры вычисления линейной сложности двоичных последовательностей с периодами.

    курсовая работа (797,5 K)
  • Порядковые определения. Топологические определения. Вполне упорядоченные множества и их свойства. Конечные цепи и их порядковые типы. Порядковый тип. Свойства ординальных чисел. Пространство ординальных чисел W(1) и его свойства.

    дипломная работа (136,4 K)
  • Общая формулировка задания на курсовой проект. Линейное программирование. Задача целочисленного линейного программирования, с булевскими переменными. Нелинейное программирование. Задача поиска глобального экстремума функции.

    курсовая работа (506,1 K)
  • Поиск экстремума функций при наличии ограничений типа неравенств; история возникновения, становления и перспективы линейного программирования. Практическое применение методов Канторовича. Количество информации и требования к коммуникационным системам.

    реферат (30,5 K)
  • Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.

    контрольная работа (51,5 K)
  • Понятие уравнения, его корни. Решение уравнения, усвоение понятий равносильного и линейного уравнений, нахождение их корней при переносе слагаемых, при наличии скобок. Формирование вычислительных навыков учащихся, их памяти и мыслительных операций.

    конспект урока (118,0 K)
  • Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.

    контрольная работа (951,8 K)
  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа (79,4 K)
  • Диофант и история диофантовых уравнений. О числе решений линейных диофантовых уравнений (ЛДУ). Нахождение решений для некоторых частных случаев ЛДУ. ЛДУ c одной неизвестной и с двумя неизвестными. Произвольные ЛДУ.

    курсовая работа (108,7 K)
  • Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.

    материалы конференции (554,8 K)
  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа (395,4 K)
  • Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.

    презентация (272,9 K)
  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация (206,3 K)
  • Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.

    дипломная работа (3,0 M)
  • Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.

    реферат (249,4 K)
  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат (203,0 K)
  • Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.

    дипломная работа (181,3 K)
  • Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.

    методичка (232,1 K)
  • Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.

    контрольная работа (95,0 K)
  • Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.

    контрольная работа (87,1 K)
  • Полярная система координат. Построение линий в полярной системе координат с помощью математического пакета MathCAD. Уравнение в полярных координатах логарифмической спирали. Полярное уравнение архимедовой спирали. Координаты, применяемые в математике.

    научная работа (3,2 M)
  • Приемы и методы качественной теории дифференциальных уравнений на плоскости. Визуализация и анализ инвариантных множеств динамических систем. Теорема о существовании четырех линий равновесия. Первый интеграл. Решение системы первого и второго порядка.

    курсовая работа (378,5 K)
  • История открытия Лейпцигским профессором листа Мебиуса, его удивительные свойства: имеет всего одну сторону, не связанную с положением в пространстве, понятием расстояния и угла. Техническое применение ленты и ее описание в фантастических рассказах.

    реферат (2,3 M)
  • Лист (лента) Мёбиуса как топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. История возникновения ленты Мёбиуса, её свойства, применение в геометрии и в повседневной жизни.

    реферат (5,1 M)