Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий

Проходческая система как объект имитационного моделирования. Обзор методов и процедур, используемых в практике имитационного моделирования. Имитационное моделирование производительности погрузки и транспорта при использовании ковшовых погрузочных машин.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 21.02.2011
Размер файла 6,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

2

Размещено на http://www.allbest.ru/

Содержание

ВВЕДЕНИЕ

1. МЕТОДИЧЕСКИЕ АСПЕКТЫ выбора проходческИХ погрузочно-транспортнЫХ модулЕЙ

1.1 Проходческая система как объект имитационного моделирования

1.2 Обзор методов и процедур, используемых в практике имитационного моделирования процессов горного производства

1.3 Анализ состояния разработки математических моделей, описывающих функционирование проходческих погрузочно-транспортных модулей

1.4 Программа и задачи исследования

2. РАЗРАБОТКА ПРИНЦИПОВ И ПРОЦЕДУР МОДЕЛИРОВАНИЯ ПОГРУЗОЧНО-ТРАНСПОРТНЫХ МОДУЛЕЙ С УЧЁТОМ СЛУЧАЙНОГО ХАРАКТЕРА ВНЕШНИХ ВОЗДЕЙСТВИЙ

2.1 Общая структура моделей и последовательность процедур моделирования погрузочно-транспортных модулей

2.2 Описание состава штабеля как функции случайной величины размера куска

2.3 Моделирование гранулометрического состава в малом выделенном объёме

2.4 Средний случайный размер куска в малом выделенном объёме

3. Математические модели рабочих процессов ковшовых погрузочных машин

3.1 Математические модели процесса внедрения ковша в штабель

3.2 Математические модели процесса зачерпывания

3.3 Объём единичного захвата ковшом. Предельная вместимость ковша и объём ссыпания

4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ПОГРУЗКИ И ТРАНСПОРТА ПРИ ИСПОЛЬЗОВАНИИ КОВШОВЫХ ПОГРУЗОЧНЫХ МАШИН

4.1 Общее построение имитационной модели формирования потока случайных объёмов черпания

4.2 Математические модели поцикловой продолжительности единичных черпаний

4.3 Исследование и оценка предельных возможностей проходческого специализированного перегружателя

5. РАЗРАБОТКА ИНЖЕНЕРНОЙ МЕТОДИКИ ВЫБОРА РАЦИОНАЛЬНЫХ ВАРИАНТОВ ПРОХОДЧЕСКИХ ПОГРУЗОЧНО-ТРАНСПОРТНЫХ МОДУЛЕЙ

5.1 Общее построение инженерной методики

5.2 Алгоритм и программа имитационной модели функционирования погрузочно-транспортного модуля

5.3 Прогнозная оценка эффективности различных вариантов погрузочно-транспортных модулей

Выводы и рекомендации

Библиографический список

ПРИЛОЖЕНИЯ

ВВЕДЕНИЕ

имитационное моделирование производительность погрузочный

Горнопроходческие работы (ГПР) при проведении выработок буровзрывным способом занимают особое место в деятельности горного предприятия: трудоёмкость ГПР составляет более 25 % общих трудозатрат. ГПР являются одновременно фондообразующим и фондопотребляющим процессами, при этом стоимость выработок достигает 60 % основных фондов. Проблема снижения затрат на проведение выработок остаётся весьма актуальной.

При множестве альтернативных направлений решения указанной проблемы необходимо выделить одно - разработка научно-обоснованных методов и процедур выбора горнопроходческого оборудования в условиях развитого рынка машиностроительной продукции. Решение такой задачи актуально по следующим соображениям:

1) существование множества вариантов горнопроходческих машин для конкретных условий;

2) высокая стоимость оборудования и значительный уровень экономического риска;

3) завышенные рекламные характеристики оборудования заводов-изготовителей;

4) неполнота информации о рабочих процессах горнопроходческих машин, содержащаяся в литературе и нормативных документах, в которых функционирование машин рассматривается на основе усреднённых детерминированных моделей, что приводит к искажённым оценкам характеристик машин.

Вместе с тем, полная задача выбора горнопроходческого комплекта или комплекса является сложной и объёмной, решение которой возможно на основе имитационного моделирования. В соответствии с системной концепцией решения подобных задач необходимо обоснование целевой функции, совокупности ограничений, моделирование работы вариантов оборудования в процессах разрушения, погрузки призабойного транспорта, крепления, сопоставления вариантов и выбор приемлемого. Это требует разработки соответствующей научно-методической основы, программного обеспечения, создания баз данных, что в настоящее время представляется затруднительным. Целесообразно приступить к решению задачи по частям, для отдельных подсистем.

Погрузочно-транспортный модуль (ППТМ) проходческой системы (рис.) можно считать достаточно обособленным объектом, выполняющим функцию выгрузки штабеля разрыхлённой взрывом горной массы и удаление её за пределы призабойной зоны. ППТМ характеризуется разнообразием конструктивных форм, многочисленными вариантами сочетания погрузочной и призабойной транспортной подсистем. Отличительная особенность ППТМ состоит в том, что средой взаимодействия является штабель кускового материала, в котором реализуются случайные процессы при внедрении, захвате, погрузке горной массы и её транспортировании.

Разновидности проходческих погрузочно-транспортных модулей: а - погрузочная машина ковшового типа при погрузке в одиночные вагонетки;

б - то же в двухпутевой выработке; в - погрузочная машина в сочетании

с монорельсовым перегружателем; г - то же с напочвенным перегружателем;

д - то же в сочетании с конвейерной линией; е - то же с телескопическим конвейером; ж - погрузочная машина в сочетании с самоходным вагоном (1 - обменное устройство; 2 - вагонетка)

Цель работы заключается в снижении уровня риска при выборе альтернативных вариантов проходческих погрузочно-транспортных модулей на основе использования программно-методического обеспечения имитационного моделирования рабочих процессов ППТМ. Основная идея работы состоит в разработке базовых математических моделей, обосновании процедур имитационного моделирования процессов погрузки и транспортирования кусковых пород погрузочным оборудованием периодического действия с учётом случайного характера внешних воздействий.

При разработке методов и процедур имитационного моделирования ППТМ я исходил из следующих базовых положений.

1. Предельные технические возможности погрузочно-транспортных модулей в конкретных условиях эксплуатации должны определяться на основе адекватных математических моделей, имитационного моделирования процессов формирования производительности, трудоёмкости за общее время погрузки и транспортирования с учётом случайного гранулометрического состава штабеля, потоков отказов и восстановлений оборудования.

2. Гранулометрический состав штабеля горной массы представляет собой непрерывную функцию распределения случайного размера куска, которая преобразуется в процессах единичных черпаний погрузочным органом (ковшом, нагребающими лапами, клиновым носком и т.д.); объём единичного захвата из штабеля формируется как случайный процесс внедрения и зачерпывания, при этом малые локальные объёмы в погрузочных органах и перед их кромками должны описываться на основе экспериментально установленного закона распределения.

3. Производительность за чистое время погрузки ППТМ, в состав которого входит ковшовая погрузочная машина, должна определяться при последовательном использовании детерминированных математических моделей сопротивлений внедрению, зачерпыванию, наполнения ковша, динамических процессов подсистем напора и подъёма ковша как минимальное значение с учётом ограничивающих факторов - напорного усилия и энерговооружённости приводов, а реализация случайных воздействий со стороны штабеля горной массы должна учитываться через средний случайный размер куска в локальном объёме перед кромкой ковша и случайный объём единичного захвата.

4. При имитационном моделировании работы ППТМ, в состав которого входит погрузочная машина с нагребающими лапами, должны учитываться взаимосвязанные динамические процессы подачи машины на штабель, захвата материала лапами, изменения объёма активной зоны и управление механизмом подачи в функции нагрузки в приводе нагребающей части; случайные составляющие объёмов единичного захвата лапами формируются при этом под воздействием локальных изменений гранулометрического состава в зоне сдвига.

5. Пропускная способность проходческого перегружателя, входящего в состав погрузочно-транспортного модуля, определяется также случайными процессами захвата порции материала тягово-транспортирующим органом и изменением гранулометрического состава порций материала при передаче груза из одной ячейки в другую.

В работе использованы методы теории вероятностей, математической статистики, имитационного моделирования многосвязных систем при случайном характере внешних воздействий, а также методы теоретической механики, теории электропривода.

1. МЕТОДИЧЕСКИЕ АСПЕКТЫ выбора проходческИХ погрузочно-транспортнЫХ модулЕЙ

1.1 Проходческая система как объект имитационного моделирования

Объектом исследования в настоящей работе является буровзрывная проходческая система (БВПС). По определению [1], БВПС представляет собой совокупность горной выработки, характеризуемой условиями её проведения, проекта выполнения буровзрывных работ, взаимосвязанных машин и механизмов и устройств, необходимых для перемещения забоя во времени и пространстве с использованием буровзрывных работ. БВПС - типично сложная система, проектирование которой необходимо вести на основе принципов системного подхода [2]. Сложность структуры и функционирования БВПС характеризуется рядом признаков: множество подсистем и элементов; постоянно изменяющиеся динамические взаимосвязи как внутри подсистем, так и между ними; зависимость конечной эффективности системы от результата каждого из процессов; существенное влияние случайных факторов - свойств горных пород в массиве и разрушенном состоянии; множество вариантов оборудования для выполнения каждого из процессов; вероятностный характер потоков отказов и восстановлений горнопроходческого оборудования.

В этих условиях проблема выбора оборудования БВПС не является тривиальной. На особенности буровзрывной проходческой системы впервые обратил внимание проф. В.Ф. Горбунов [3, 4], в работах которого разработаны принципы структурной систематизации БВПС. Дальнейшее развитие и детализация структур БВПС получила в исследованиях проф. И.В. Ляшенко, доц. В.Г. Сильня, проф. Г.Ш. Хазановича [1, 2], которые обосновали необходимость проектирования проходческих систем на основе принципов системного подхода. Это, прежде всего, относится к задаче выбора горнопроходческого оборудования.

Отметим, что в соответствии с системной концепцией задача выбора рационального варианта горнопроходческого оборудования должна решаться не для отдельной выработки, а для совокупности горнопроходческих работ предприятия (или акционерного общества, добывающей компании) в целом. Необходимо, прежде всего, определиться с целевой функцией и совокупностью ограничений. Общеизвестно [2], что задачи такого уровня являются многокритериальными. В частности, лучшим вариантом может быть признан комплект, комплекс или агрегат, обладающий наибольшей производительностью, наименьшей трудоёмкостью или стоимостью готовой продукции. Экстремумы указанных целевых функций не совпадают. В этом случае по согласованию с заказчиком необходимо либо отдать предпочтение одному из критериев, а другие принять в качестве ограничений, либо построить композицию из упомянутых критериев с использованием экспертных методов. Необходимо также формирование совокупности ограничений.

Таким образом, постановка и решение полной задачи выбора горнопроходческого оборудования является масштабной системной проблемой, содержит ряд неопределённостей, носит вариативный характер с позиций свойств критериальной функции и совокупности ограничений. Эта задача может иметь ряд иерархических уровней постановки и решения: добывающая компания; отдельная шахта; отдельная выработка; конкретный технологический процесс.

Рассматривая задачу для отдельного процесса, необходимо строго соблюдать требования непротиворечивости критериев подсистем различного уровня [2]. В частности, требование минимальной трудоёмкости работ погрузочно-транспортной подсистемы ?погр может не соответствовать минимизации критерия (?погр +??бур) min, где ?бур - трудоёмкость процесса бурения шпуров по забою (рис. 1.1).

Как показано ниже, методы решения задач выбора горнопроходческого оборудования в системной постановке с учётом влияния факторов статистической неопределённости не разработаны. В связи с этим на практике применяют методы интуитивные, детерминированные, с использованием типовых технологических схем.

Рис. 1.1. К вопросу о согласовании критериев различных процессов БВПС

Значительный вклад в создание расчётных моделей трудоёмкости процессов горнопроходческих работ внесли учёные научных школ ННЦ ГП - ИГД им. А.А. Скочинского, ЦНИИПодземмаша, ДонУГИ, Института угля и углехимии СО АН РФ, КузНИИШахтостроя и др. [5-9]. Следует особо отметить исследования, выполненные в ННЦ ГП - ИГД им. А.А. Скочинского под руководством проф. Э.Э. Нильвы [5, 6], которые позволили создать базу данных по удельной трудоёмкости процессов буровзрывного и комбайнового способов проведения выработок.

Математическая модель трудоёмкости позволяет определить для каждой совокупности машин и оборудования показатель удельных трудозатрат и на этой основе произвести выбор рационального варианта. Для нормативного обеспечения процедур выбора авторами произведены многочисленные хронометражные наблюдения, выполнена их обработка, получены регрессионные зависимости для коэффициентов влияния горно-геологических и организационных условий, а также средних значений трудоёмкости вспомогательных операций. Эти исследования охватили многие типоразмеры отечественного серийного горнопроходческого оборудования: бурильного, погрузочно-транспортного и крепеустановочного.

Несмотря на признание авторами случайного характера формирования производительности и трудоёмкости процессов, доверительные оценки получаемых показателей в доступной литературе отсутствуют. То есть по существу расчётные формулы являются детерминированными соотношениями, в которых фигурируют средние значения производительности машин и трудоёмкости вспомогательных операций. Вместе с тем, к настоящему времени накоплены знания о закономерностях формирования рабочих процессов горнопроходческих машин, которые позволяют учитывать реальные стохастические свойства среды взаимодействия: изменение физико-механических свойств пород, распределение по крупности горной массы, формирование потока отказов и восстановлений. Это позволит более информативно воссоздавать производительность технологических машин как случайный процесс, повысить достоверность получения основных показателей проходческих систем.

Другим аргументом в пользу необходимости воспроизведения рабочих процессов с учётом случайного характера внешних воздействий является то, что приводимые в технических описаниях и инструкциях по эксплуатации показатели технической производительности Ri носят, как правило, рекламный характер. Показатели Ri не сопровождаются конкретным указанием условий, для которых они получены.

Сложилась противоречивая ситуация: с одной стороны, закономерности формирования рабочих процессов отдельных технологических машин установлены на достаточно информативном уровне, с другой - эти закономерности не используются для определения реальных потребительских свойств машин. Необходима разработка методов и процедур имитационного моделирования процессов формирования производительности и трудоёмкости горнопроходческих систем на основе общеизвестных подходов [10-14] и специфических закономерностей взаимодействия отдельных машин с внешней средой, обладающей стохастическими свойствами.

1.2 Обзор методов и процедур, используемых в практике имитационного моделирования процессов горного производства

Из множества методов моделирования для системного анализа эффективности сложных технических систем в последние годы получило широкое распространение имитационное моделирование, позволяющее наиболее полно учесть все существенные факторы [15]. Для построения имитационной модели необходимо воспроизвести структуру системы, последовательность событий во времени, адекватную реальным процессам, и свойства процессов, прежде всего, стохастические, соответствующие реальным закономерностям. Действие случайных факторов учитывается с помощью генераторов случайных чисел (имитаторов), настроенных на соответствующие вероятностные распределения.

Имитационное моделирование стало в последние годы эффективным научно-методическим инструментом при изучении рабочих процессов машин и оборудования, управления сложными системами. Оно находит широкое применение для решения задач исследования операций (сетевое планирование и управление, массовое обслуживание, управление запасами, оптимальное распределение ресурсов и мн. др.); для проектирования и исследования путей усовершенствования производственных процессов в целях повышения их производительности и рентабельности, внедрения новых технологий.

Как известно из работы [13], имитационное моделирование объединяет имитацию исследуемых явлений и планирование имитационного эксперимента. Необходимость использования теории планирования эксперимента [16] при имитационном моделировании сложных систем вызвана значительным временем каждой реализации на ЭВМ. Применительно к задачам выбора оборудования, в частности горнопроходческого, планирование имитационного эксперимента имеет особое значение, так как необходимо всестороннее исследование свойств системы во всём диапазоне применения.

Для горных технологий применение имитационного моделирования позволяет обосновать целесообразность реальных инвестиций. По-суще-ству, для подавляющего большинства реальных ситуаций в горном деле другие методы практически неприемлемы. Это связано с изменчивостью природных условий, для которых нужно обосновать выбор технологических решений совместно с вариантами оборудования.

Использование методологии и решение практических задач горного дела на основе имитационного моделирования разрабатывается с 50-х гг. ХХ в. [17-19]. За более чем 50-летний период компьютерные технологии в горном деле прошли значительный путь развития и совершенствования [15].

Первый этап применения компьютерных технологий был связан с созданием простых моделей месторождений для оценки объёмов горной массы и содержания природных запасов. В 1958 г. имитационное моделирование впервые было применено для планирования бурения, взрывания, погрузки и крепления в забоях угольной шахты. В 60-х гг. с помощью имитационного моделирования на языке Фортран стали решать задачи по анализу работы шахтной транспортной сети, процессов выемки горной массы и взаимодействия работы транспорта.

В начале 1970-х гг. горная промышленность получила трёхмерное цифровое блочное моделирование и геостатический анализ ресурсов. Геологи научились использовать эти технологии для прогнозирования запасов месторождений. Результатом стало улучшение качества и достоверности оценки ресурсов.

С появлением геометрического (каркасного) моделирования и визуализации появилась возможность рассматривать исследуемые структуры как трёхмерные пространственные объекты и обеспечивать лучший контроль над созданием цифровых блочных моделей.

В конце 80-х гг. появились полностью компьютеризированные процессы: горное проектирование, оптимизация, календарное планирование, но эта «волна» прошла свой пик и начала спадать к середине 90-х гг. В Рос-сии с 60-х гг. имитационным моделированием горных работ занимались Гипроруда, НИИКМА, ИПКОН, НИГРИ, ИГД СО АН СССР, ИГД Кольского НЦ АН СССР, МГГУ, НИОГР, УГГА (УГГУ), КузГТУ и др. В последние годы за рубежом разрабатываются специальные языки моделирования, соединённые с языком компьютерной анимации [15]. Это привело к быстрому развитию методов и приложений имитационного моделирования в горном деле.

Имеется опыт решения задач планирования горных работ, анализа шахтной транспортной сети, применения роботизированных технологий и ряда других [15, 20-24]. Анализ этого опыта свидетельствует о необходимости включения в состав процедур имитационного моделирования следующих этапов:

1) постановка задачи и определение цели имитационного моделирования; на этом этапе устанавливаются характеристики системы, подлежащие изучению, показатели эффективности (целевые функ-ции) и ограничения;

2) изучение исследуемой системы с точки зрения совокупности входных воздействий, в том числе случайных;

3) формулировка и построение математической модели, выделение основных факторов;

4) планирование компьютерных экспериментов, построение структуры процесса исследования;

5) составление программы и проведение численного эксперимента;

6) проверка адекватности математической модели (сравнение результатов имитационного моделирования с опытными данными);

7) использование результатов имитационного моделирования в научных или практических целях.

Эта совокупность процедур представляется необходимой и достаточной при решении задач выбора оборудования для горнопроходческих работ.

В последние годы методология имитационного моделирования начала использоваться при исследованиях горнопроходческих систем, в частности, при разработке проектов проведения подготовительных выработок [25-27]. В этих задачах остро стоит вопрос о выборе эффективного проходческого оборудования из числа отечественных и зарубежных образцов. Затруднения связаны с оценкой эффективности использования проходческих машин в конкретных условиях и прогнозируемыми показателями на выходе: трудоёмкости, скорости проведения выработки, производительности труда.

В ННЦ ГП-ИГД им. А.А. Скочинского разработана и реализована [26] на ПЭВМ система «Проза» (ПРОходческий ЗАбой) для автоматизированного проектирования проходческой технологии. Система содержит блоки для пооперационного и имитационного моделирования технологического процесса, блок выбора сечений, базу знаний, блоки поиска рационального варианта, интерфейс пользователя. В системе предусмотрена возможность предварительной оценки новых видов проходческого оборудования. В течение ряда лет создаются экспериментальные блоки автоматизированной системы формирования выходных документов по анализу и прогнозированию (ИПАС). Система предназначена для своевременной и эффективной обработки научно-технического информационного потока в горном производстве по запросам пользователей на базе ПЭВМ и для автоматизированного формирования выходных документов.

В Шахтинском институте ЮРГТУ (НПИ) на кафедре «Технологические машины и оборудование» разработан общий методический подход к моделированию процессов проведения выработки буровзрывным способом [28-31]. Целью работы является разработка программно-технических средств, с помощью которых в интерактивном режиме создаётся проект проведения горной выработки, отвечающей одному из критериев: наивысшая производительность труда, максимальная производительность системы (скорость проведения выработки) или минимальные удельные затраты при заданной совокупности горно-геологических и технологических ограничений. Показано, что общее построение такой системы должно содержать этапы геометрического, кинематического и силового моделирования.

По заданным критериям и ограничениям оценивается каждый вариант комплекта, комплекса или агрегата. Предложенная методика является долговременной программой работы, реализация которой планируется поэтапно по схеме: процесс - технологическая подсистема - одиночная выработка - шахта - региональная компания (рис. 1.2).

Рис. 1.2. Программа исследований и разработок в области имитационного моделирования горнопроходческого оборудования

Анализ опыта применения имитационного моделирования в горных технологиях в целом и в горнопроходческих системах в частности показывает, что последняя, как объект имитационного моделирования, имеет ряд существенных особенностей:

1) каждый из элементов проходческого цикла (разрушение - удаление - крепление) характеризуется принципиально отличающимися физическими закономерностями рабочих процессов взаимодействия с внешней средой;

2) в каждый данный момент подсистемы находятся в различных состояниях: работа, ремонт, ожидание и т.д., в различных точках рабочего пространства;

3) при использовании различных видов проходческого оборудования возможны и реализуются различные условия совмещения операций во времени, функций операторов и орудий труда;

4) множество вариантов технологического оборудования, пригодного для использования в данных условиях: бурильного, погрузочного, призабойного транспортного, крепеустановочного, вспомогательного;

5) существенное влияние случайных воздействий при осуществлении технологических процессов.

Эти особенности, как показано ранее, предопределяют сложность системы и её имитационной модели, необходимость на данном этапе разработки процедур моделирования отдельных процессов.

1.3 Анализ состояния разработки математических моделей, описывающих функционирование проходческих погрузочно-транспортных модулей

Создание общей методологии выбора рациональных вариантов горнопроходческого оборудования целесообразно начать с погрузочно-транс-портной подсистемы. По трудоёмкости эта подсистема занимает 25-35 % трудозатрат проходческого цикла. Именно ППТМ в значительной мере определяет стохастические неопределённости в проходческой системе:

1) взаимодействие погрузочных и транспортных машин со штабелем горной массы, имеющих гранулометрический состав как случайную функцию размера куска;

2) удельная трудоёмкость ручных вспомогательных операций, представляющих собой случайные величины, характеристики которых зависят от горнотехнических и технологических условий проведения выработки;

3) случайные потоки отказов и восстановлений оборудования - погрузочного и призабойного транспортного.

Как показано выше, для горнопроходческой системы в целом и отдельных подсистем, в качестве целевой функции могут быть приняты: удельная трудоёмкость проведения выработки ?, чел.-мин/м3, производительность системы, то есть приведённая скорость проведения выработки , м3/ч, или удельная стоимость готовой выработки C, руб./м3. Принципиально постановка оптимизационной задачи выбора горнопроходческого оборудования аналогична для любого из перечисленных критериев. Вместе с тем, минимизация удельных суммарных затрат потребует создания достоверной базы данных по каждой из составляющих, что в условиях нестабильных цен на оборудование, материалы и рабочую силу практически невозможно. Финансовые ресурсы заказчика могут быть приняты в качестве принуждающей связи при оценке и сравнении вариантов.

Наиболее полно технико-экономические свойства проходческой системы можно оценить с помощью удельной трудоёмкости ?. Этот критериальный показатель, как показано в работах [32, 33], определяет, с одной стороны, основную составляющую затрат - затраты живого труда (заработную плату), с другой - позволяет установить связь с производительностью системы при известном числе операторов. При минимальном значении удельной трудоёмкости проведения выработки известного поперечного сечения можно обеспечить в большинстве случаев наибольшие скорости проходки (за счёт увеличения численности проходческой бригады и совмещения операций). Таким образом, показатель ? является адекватной характеристикой технических и экономических свойств проходческой системы и её подсистем, в частности, погрузочно-транспортной подсистемы.

Как показано в п. 1.1, удельная трудоёмкость процесса определяется производительностью технологической машины за чистое время погруз- ки R?, с учётом влияния горно-технологических условий КГГ, коэффициента машинного времени Км и трудозатрат на вспомогательные операции Ni. В формулу [5] не введён в явном виде коэффициент готовности подсистемы и затраты труда на ликвидацию отказов. Однако эта процедура может быть выполнена дополнительно при моделировании процесса формирования производительности машины и суммарной трудоёмкости процесса.

Применительно к работе ППТМ с погрузочными машинами ковшового типа формирование производительности R(t) есть случайный процесс последовательного отделения от штабеля единичного случайного объёма Vкj и передача его на сопряжённое транспортное средство через случайный отрезок времени Tцj. Для ППТМ с машинами непрерывного действия необходимо описать формирование случайного грузопотока q(t) и передачу его на транспортное средство.

Вопросам расчёта производительности погрузочных и призабойных транспортных машин посвящены исследования многих научно-исследовательских институтов СССР и РФ, выполненные за последние 50 лет: ИГД СО АН СССР (РФ); ЦНИИПодземмаш; Гипроникель; ИУ СО АН СССР (РФ); ИГТМ АН УССР; ИГД АН КазССР; МГРИ; ЮРГТУ (НПИ); ХГИ и ряда других. Значительный вклад в решение проблемы адекватного описания рабочих процессов внесли известные руководители научных школ доктора технических наук, профессора Н.В. Тихонов, Г.В. Родионов, А.А. Соловьев, С.С. Музгин, П.А. Михирев, Г.М. Водяник, А.Д. Костылев, В.Д. Горбунов, Г.Ш. Хазанович, Ю.М. Ляшенко, В.И. Бунин, А.С. Носенко; кандидаты технических наук О.П. Иванов, В.Г. Сильня, Б.П. Семко, О.Д. Гагин, С.И. Носенко, В.Д. Ерейский, Н.А. Рюмин, Е.А. Крисаченко, П.Д. Кравченко, В.А. Турушин, С.Е. Лоховинин, А.А. Остановский, Р.В. Кар-гин и другие.

Впервые комплексные исследования процесса взаимодействия ковша со штабелем кускового материала выполнены в 50-х гг. ХХ в. в ИГД СО АН СССР под руководством проф. Г.В. Родионова [34-37, 38-41]. Получены зависимости сопротивлений внедрению от глубины внедрения [38, 39], сопротивлений зачерпыванию от угла поворота [40, 41] и первые математические модели наполнения ковша [38], а также разработана первая методика выбора параметров ковшовых погрузочных машин [37]. Этими исследованиями были продолжены экспериментальные работы Н.В. Тихонова, которые проводились в МГРИ [42], и О.П. Иванова - в НПИ (ныне ЮРГТУ (НПИ)) [43]. В 1962 г. вышла в свет первая обобщающая монография [44].

Необходимо отметить существенный вклад в теорию работы ковшовых погрузчиков и подземных экскаваторов коллектива лаборатории ИГД Казахской АН ССР под руководством д-ра техн. наук С.С. Музгина [45-47]. Им впервые получены закономерности взаимодействия ковша со штабелем крупнокускового материала, обращено внимание на стохастический характер закономерностей, а также на влияние масштабного фактора, то есть соотношение размеров рабочего органа и куска погружаемого материала. Необходимо отметить работы доцента Ю.Ф. Фабричного, выполненные также для анализа процессов взаимодействия ковша с крупнокусковой горной массой [48].

Значительные по объёму и содержанию научно-исследовательские работы в области механизации погрузки горной массы выполнены в научной школе Новочеркасского политехнического института, ныне ЮРГТУ (НПИ) [32, 33, 49-62, 63-65]. Под руководством профессора В.Г. Михайлова, а затем доцентов О.П. Иванова и В.Г. Сильня проведены масштабные теоретические и экспериментальные исследования рабочих процессов ковшовых погрузочных машин и машин с парными нагребающими лапами. Следует отметить работы в области теории взаимодействия ковша со штабелем доцентов О.Д. Гагина, В.Д. Ерейского, в области динамики процессов внедрения и зачерпывания профессора Г.Ш. Хазановича, доцентов С.И. Носенко, В.А. Щербакова.

В диссертационной работе В.Д. Ерейского впервые установлено непосредственное влияние крупности кусков d на формирование зоны предельного напряжённого состояния перед элементами ковша при внедрении и зачерпывании [64]. В математических моделях сопротивлений внедрению и зачерпыванию введены функции влияния эффективного диаметра куска перед рабочей кромкой ковша. Таким образом, положено начало исследованиям влияния случайных факторов на закономерности рабочих процессов.

Вместе с тем, в упоминающихся работах не рассматриваются вопросы формирования законов распределения размеров куска как случайной величины. Поэтому полученные зависимости W = f(d) не позволяют проводить имитационное моделирование процесса погрузки. Требуется разработка специальных адекватных процедур формирования случайной величины D из штабеля, гранулометрический состав которого, в свою очередь, представляет собой некоторое распределение размера куска.

Значительный вклад в теорию работы ковшовых погрузочных машин внесли исследования доцента О.Д. Гагина [52-54]. В этих работах получили обоснование математические модели сопротивлений внедрению для ковшей разнообразных геометрических форм, в том числе с отклонёнными от вертикали боковыми стенками. В последующих работах О.Д. Гагиным были сделаны предположения о стохастическом характере зависимости W= f(s), где s - глубина внедрения элементов ковша. Однако дальнейшего развития эта идея не получила.

Начало изучения работы ковшовых погрузочных машин в динамике положили работы учёных Украины - Б.П. Семко [66, 67], С.А. Полуянского, А.А. Дихтяря, Ю.П. Савицкого, а также учёных НПИ - Г.Ш. Хазановича, С.И. Носенко и В.А. Щербакова [33, 55-57]. Для целей настоящей работы особое значение имеют исследования процессов динамики внедрения и зачерпывания, которые позволяют имитировать на моделях реальный эффект наполнения ковша и производительность машины.

В рассматриваемых работах изучались процессы в детерминированной постановке. Первые предложения о возможности учёта случайных воздействий сформулированы в докторской диссертации Г.Ш. Хазановича [33]. Однако и в этой работе не был сформулирован методический подход, позволяющий рассматривать в динамике случайный процесс погрузки.

Важнейшее значение для создания имитационной модели процессов работы ППТМ имеют закономерности наполнения ковша. Этим вопросам посвящены работы Г.В. Родионова [33, 36], В.Г. Сильня [50, 51], В.Д. Ерейского [63]. Следует отметить, что процессы наполнения рассматривались для ковшей закрытой конструкции, имеющих две боковые стенки, препятствующие ссыпанию материала. Для ковшей с открытыми боковыми стенками или без них процессы ссыпания являются определяющими. Теория наполнения ковшей такого типа к настоящему времени не разработана, поэтому реальное наполнение ковша и его предельную вместимость определяют по приближённым моделям. Это препятствует разработке имитационных моделей функционирования погрузочных машин с боковой разгрузкой ковша.

Исследования рабочих процессов погрузочных машин с парными нагребающими лапами нашли отражение в трудах профессоров Я.Б. Кальницкого, Г.Ш. Хазановича, доцентов Е.А. Крисаченко, И.Ф. Рюмина, С.Е. Лоховинина и др. [68-77]. В диссертационной работе Е.А. Крисаченко [71] впервые установлено влияние среднего размера куска на объём сдвигаемого слоя при работе нагребающих лап. Это позволило уточнить математические модели производительности и нагрузок в приводе нагребающих лап. Однако, как и в случае с ковшовыми машинами, методика генерирования среднего размера куска из штабеля известного гранулометрического состава не получила развития. Поэтому моделирование рабочих процессов машин типа ПНБ в динамике оставалось практически неразрешимой задачей.

Впервые имитационное моделирование процесса погрузки машинами с нагребающими лапами выполнено в диссертационной работе С.Е. Лоховинина под руководством и при участии Г.Ш. Хазановича [74-76]. В этих исследованиях доказано влияние так называемого «объёма материала в активной зоне» на формирование разового захвата и момента на валу ведущего диска. Однако наблюдаемый в опытах случайный процесс формирования нагрузок не нашёл отражение в математических моделях. Расчёты объёмов захвата и мгновенных нагрузок выполнялись с использованием детерминистского подхода, при котором средний размер куска горной массы сохранялся неизменным. Таким образом, имитационное моделирование практически сводилось к исследованию поведения системы «погрузочная машина - штабель - система управления» без учёта реальных внешних воздействий, имеющих фактически случайный характер. Это приводило к ошибкам, значение которых оценить не представлялось возможным.

Аналогичная ситуация сложилась и при изучении рабочих процессов специализированных проходческих перегружателей с клиновым тягово-транспортирующим органом [78-82]. Исследования, выполненные на натурных экспериментальных установках, показали, что формирование грузопотока клиновым ТТО носит вероятностный характер. Главным возмущающим воздействием является, как и в случае с машинами типа ПНБ, изменение случайного размера куска. Однако математические модели формирования грузопотока и нагрузок рассматривались также при усреднённом значении крупности горной массы.

Изучению надёжности горных машин посвящены исследования учёных многих научных школ [83, 84]. В настоящее время под руководством ведущих учёных АН РФ сформировано крупное научное направление в машиноведении, устанавливающее взаимосвязи надёжности и эффективности в технике [85]. Однако исследования надёжности шахтных погрузочных и призабойных транспортных машин не получили пока должного развития. Следует отметить лишь научное направление в этой области, которое возглавлял канд. техн. наук С.И. Носенко [86-91, 92]. Под его руководством и при непосредственном участии его учеников О.С. Сапунова [92], В.Г. Черных [87-89] на многих шахтах Российской части Донбасса собраны и обобщены показатели надёжности машин 1ПНБ-2, 2ПНБ-2, ППМ-4, 1ППН-5 и др. Этот материал может быть использован для формирования имитационных моделей функционирования ППТМ. Он содержит функции распределения вероятности безотказной работы погрузочных машин, распределения времени восстановления и необходимые числовые характеристики.

1.4. Программа и задачи исследования

Анализ состояния вопроса выбора рациональных вариантов ППТМ для проведения подготовительных выработок буровзрывным способом показывает, что к настоящему времени методическая база и программно-техническое обеспечение требует существенной доработки. Несмотря на то, что базовые математические модели отдельных рабочих процессов погрузочных и призабойных транспортных машин разработаны, имитационное моделирование рассматриваемой подсистемы с учётом основных взаимосвязей и влияющих факторов практически невозможно. Главными причинами такого положения, на наш взгляд, являются следующие:

- математические модели процессов внедрения, черпания, формирования объёмов захвата, производительности и трудоёмкости представляют собой невзаимоувязанную совокупность методов расчёта отдельных элементов цикла;

- прямое использование математических моделей не позволяет определить реальные показатели ППТМ - производительности и суммарной удельной трудоёмкости - за общее время функционирования при выгрузке штабеля реальной геометрической формы и гранулометрического состава;

- процессы взаимодействия погрузочных органов с горной массой описаны на основе детерминированных представлений, позволяющих определить средние значения искомого показателя без оценки уровня ошибки;

- зависимости сопротивлений внедрению, зачерпыванию, наполнения ковша, объёма единичного захвата лапами и клиновыми элементами от основных влияющих факторов требуют уточнения и корректировки с учётом изменения условий функционирования в стохастической среде погружаемого материала; для отдельных рабочих процессов, в частности погрузочных машин с боковой разгрузкой ковша, нагребающими лапами, математические модели необходимо разрабатывать;

- отсутствуют инженерные методы комплексного расчёта показателей ППТМ и программно-технические средства пользователя.

Изложенное позволяет конкретизировать объект и задачи исследования. В качестве объекта исследования рассматривается подсистема, состоящая из штабеля горной массы, погрузочной машины и средств призабойного транспорта, которая осуществляет удаление горной массы из забоя и передачу её на оборудование магистрального транспорта. В связи с чрезмерным разнообразием сочетаний «погрузочная машина - призабойное транспортное оборудование» в работе рассматриваются общие подходы к созданию имитационных моделей функционирования ППТМ и отдельные перспективные варианты. Совокупность таких вариантов далее обосновывается в настоящей работе.

Таким образом, задачи настоящей работы сводятся к следующему:

1) разработка общей структуры имитационной модели для оценки предельных возможностей оборудования проходческого погрузочно-транспортного модуля, реализующей процессы формирования производительности в стохастической среде кусковой горной массы за чистое и общее время погрузки с учётом трудоёмкости вспомогательных операций и случайных потоков отказов и восстановлений оборудования;

2) описание состава штабеля и объёмов захвата погрузочными машинами ковшового типа как стохастического процесса;

3) разработка имитационной модели формирования грузопотока про-ходческим перегружателем с клиновым тягово-транспортирую-щим органом с учётом вероятностного состава горной массы на входе;

4) исследование предельных технических возможностей отдельных перспективных вариантов проходческих погрузочно-транспорт-ных модулей; оценка адекватности математических моделей формирования объёмов захвата, производительности и трудоёмкости;

5) разработка инженерной методики выбора рационального состава погрузочно-транспортного модуля для конкретных условий эксплуатации, включая необходимое программное обеспечение.

2. РАЗРАБОТКА ПРИНЦИПОВ И ПРОЦЕДУР МОДЕЛИРОВАНИЯ ПОГРУЗОЧНО-ТРАНСПОРТНЫХ МОДУЛЕЙ С УЧЁТОМ СЛУЧАЙНОГО ХАРАКТЕРА ВНЕШНИХ ВОЗДЕЙСТВИЙ

2.1 Общая структура моделей и последовательность процедур моделирования погрузочно-транспортных модулей

В соответствии с целью и задачами исследования разработана общая последовательность процедур моделирования горнопроходческой системы, более детально - ППТМ (рис. 2.1). Исходя из системной концепции проведения выработки, этапы решения общей задачи содержат:

- обоснование целевой функции и системы ограничений;

- моделирование работы вариантов оборудования на основе адекватных математических моделей с учётом влияния случайных факторов;

- сопоставление вариантов и выбор наиболее приемлемого.

Целевые функции горнопроходческой системы и погрузочно-транс-портной подсистемы должны быть непротиворечивы. Общеизвестно, что задачи такого уровня являются многокритериальными. В частности, лучшим вариантом может быть признан погрузочно-транспортный модуль, обладающий наибольшей производительностью Q, наименьшей трудоёмкостью или стоимостью готовой продукции. Как правило, экстремумы этих целевых функций не совпадают, и тогда необходимо отдавать предпочтение одному их них, а другие принимать в качестве ограничений либо строить композицию из названных критериев.

В работе обоснована возможность в качестве критерия использовать удельную трудоёмкость (чел.-мин./м3 готовой выработки) как по отдельным процессам, так и по проходке выработки в целом.

Математические модели трудоёмкости процессов погрузки и транспортирования горной массы содержат в качестве основы реализацию производительности технологических машин и необходимые объёмы трудозатрат по управлению оборудованием за чистое и общее время работы. Поэтому при моделировании работы ППТМ, прежде всего, рассматриваются процессы формирования производительности за чистое время выполнения основных функций. Затем, с учётом известных статистических данных о необходимом количестве операторов, возможном совмещении операций, данных о потоках отказов и восстановлений, строится модель производительности системы за общее время функционирования и трудоёмкости погрузочно-транспортных операций для каждого из рассматриваемых вариантов. В качестве функций-ограничений выступают условия проведения выработки, технологические паспорта буровзрывных работ, крепления и др.

Рис. 2.1. Общая структура процедур моделирования
для выбора рационального варианта ППТМ

Таким образом, формулируется необходимая и достаточная совокупность моделей для описания рабочих процессов проходческих погрузочно-транспортных подсистем, которые являются объектами исследования:

1) гранулометрический состав горной массы в любом выделенном объёме - в целом объёме штабеля, при черпании ковшом, лапой. Это позволит определить в каждом цикле захвата материала средний случайный размер куска и построить производительность ППТМ как случайный поток единичных черпаний ковшом или нагребающими лапами;

2) формирование случайного потока единичных черпаний V(t) ковшовой погрузочной машиной за чистое время погрузки как совокупность моделей процессов внедрения, зачерпывания и наполнения ковша, а также продолжительность цикла;

3) формирование случайного грузопотока q(t) машиной с парными нагребающими лапами за чистое время погрузки как результат системного взаимодействия механизмов подачи, захвата материала лапами и устройства управления со штабелем;

4) преобразование случайного грузопотока дискретного V(t) или непрерывного q(t) призабойным транспортным оборудованием: перегружателем, средствами рельсового транспорта и т.п.;

5) наложение на грузопоток за чистое время погрузки затрат времени (и трудоёмкости) на выполнение вспомогательных операций и потока отказов и восстановлений для получения конечных показателей эффективности ППТМ за общее время работы.

2.2 Описание состава штабеля как функции
случайной величины размера куска

В настоящее время традиционно состав штабеля по крупности слагающих его кусков di описывается с помощью приближённой гистограммы распределения, в которой указываются диапазоны разрядов идолевое содержание объёмов фракций. Например, так называемый рядовой штабель [44] имеет разряды (в м) - 0-0,1; 0,1-0,2; 0,2-0,4; 0,4-0,6 и соответствующее процентное содержание - 30; 30; 30; 10 (рис. 2.2). С помощью гистограммы можно определить средний размер куска dср в полном объёме штабеля. Такое представление состава штабеля недостаточно информативно и не позволяет с достаточной точностью решать задачу о гранулометрическом составе малого объёма v << V, где V - объём штабеля и, соответственно, о среднем размере куска в объёме v. Это, в свою очередь, препятствует разработке математических моделей процессов взаимодействия погрузочных и транспортирующих органов со штабелем при случайном изменении размера куска.

Гранулометрический состав рядового штабеля

d, м

0…0,1

0,1…0,2

0,2…0,4

0,4…0,6

х

0…0,166

0,166….0,332

0,332…0,667

0,667…1

pi*

0,3

0,3

0,3

0,1

Рис. 2.2. Описание штабеля как функции случайной величины размера куска di

В реальном штабеле размер куска d - это непрерывная случайная величина, которая изменяется в пределах (0, dmax). Такое утверждение следует из того, что число кусков в штабеле достигает порядка 104. Поэтому состав штабеля логично представить в виде непрерывной функции F(d) (или плотности f(d)) распределения случайной величины d [93, 94].

Подбор аппроксимирующей кривой F(d) выполнен путём следующих преобразований экспериментальной гистограммы распределения (рис. 2.2):

1) в качестве случайной величины X выбрано отношение d/dmax, что позволило придать функции F(x) безразмерную форму;

2) по экспериментальным данным построена ступенчатая функция распределения , где - вероятность (частость) попадания случайной величины xn на соответствующий интервал;

3) через точки А1, А2, …, Аn проведена теоретическая функция распределения F(x), удовлетворяющая условиям ; , где mx - математическое ожидание случайной величины x = d/dmax;

4) соответствие теоретической функции распределения F(x) экспериментальным данным оценено с использованием критерия Пирсона - 2 [96].

По приведённой методике оценена степень приближения для ряда известных несимметричных функций распределения и показано, что наибольшей теснотой связи обладают логнормальное и экспоненциальное распределения. Последнее принято в качестве основного для дальнейших исследований. Функция распределения имеет вид: F(x) = a (1 - e -bx).

Значения коэффициентов a и b определялись в среде MathCad [98] по граничным условиям, заданной величине математического ожидания при минимальном среднеквадратическом отклонении искомой кривой от экспериментальных точек:

F(0) = 0; F = (1) = 1; ,

где ; .

Наряду с аппроксимацией гранулометрического состава рядового штабеля по экспериментальным данным при mx4=0,33, построены функции распределения крупности кусков «прогнозных» штабелей (рис. 2.2), в которых сохраняются или имеют симметричный вид функции распределения, но различаются средними размерами куска: mx1=0,5; mx2=0,67; mx3=0,75; mx5=0,25. Кривые F4(x) и F5(x) имеют экспоненциальный закон распределения, линия F1(x) - закон равномерной плотности F1(x) = x; кривые F2(x) и F3(x) построены как симметричные относительно линии F1(x) соответственно законам распределения F4(x) и F5(x):

.

Таким образом, получено математическое описание гранулометриче-ского состава штабелей в широком диапазоне изменения среднего размера куска (0,25…0,75) dmax. Это позволяет исследовать влияние состава штабе-ля по крупности на показатели работы погрузочно-транспортных модулей.

2.3 Моделирование гранулометрического состава в малом выделенном объёме

Общие методические подходы. Известные математические модели сопротивлений внедрению ковша и зачерпыванию в качестве основного влияющего фактора учитывают средний размер куска dср, методика определения которого не создана. В качестве dср принимается показатель, относящийся в целом ко всему исходному штабелю горной массы, что делает указанные модели детерминированными. При этом в расчётах устанавливается средняя постоянная глубина внедрения, объём черпания и т.д. Экспериментальные и производственные данные свидетельствуют о том, что рассматриваемые показатели являются случайными величинами с высоким коэффициентом вариации. Поэтому достоверная информация о технических показателях погрузочной машины может быть получена только на основе представления процессов как случайных, при этом главным влияющим фактором должен быть размер куска в различных проявлениях.


Подобные документы

  • Анализ транспортных систем с помощью математического моделирования. Локальные характеристики автотранспортных потоков. Моделирование транспортного потока в окрестности сужения улично-дорожной сети. Стохастическое перемешивание при подходе к узкому месту.

    практическая работа [1010,5 K], добавлен 08.12.2012

  • Сущность понятия "модель". Моделирование как метод научного познания, особенность. Элементы процесса моделирования. Моделирование работы ДВС на основе влияния размеров камер сгорания. Основные характеристики двигателей. Анализ форм камер сгорания.

    реферат [183,8 K], добавлен 12.04.2010

  • Плавность хода как один из основных эксплуатационно-технических показателей транспортных средств. Знакомство с особенностями и этапами моделирования плавности хода трактора Т-150К. Рассмотрение способов определения максимальных значений ходов подвески.

    курсовая работа [1,9 M], добавлен 16.12.2015

  • Система автоведения поездов (САВП) для автоматизации процесса управления их движением. Выбор структурной схемы, распределение функций между уровнями. Основные законы управления регуляторов времени хода. Управление с помощью имитационного моделирования.

    курсовая работа [1,6 M], добавлен 16.01.2014

  • Обзор тепловозных дизелей и существующих методов их совершенствования. Обоснование выбора прототипа. Расчет процесса сгорания, эффективных показателей двигателя. Технология создания компьютерных обучающих программ с применением трехмерного моделирования.

    дипломная работа [1,0 M], добавлен 18.11.2013

  • Характеристика, сферы применения железнодорожного, автомобильного и водяного транспорта. Моделирование возможных каналов распределения и расчет их основных параметров. Установление транспортных логистических цепей, удовлетворяющих критериям предпочтения.

    курсовая работа [155,4 K], добавлен 24.04.2013

  • Размещение оборудования в основных и вспомогательных цехах предприятия. Средства механизации погрузочно-разгрузочных и подъёмно-транспортных работ. Определение требуемого количества транспорта. Расчет тягового усилия тележки. Выбор транспортных средств.

    дипломная работа [2,7 M], добавлен 08.03.2015

  • Обеспечение безопасности движения судов. Описании бокового движения, полусвязанная и связанная системы координат. Синтез системы робастной стабилизации путевого угла судов на воздушной подушке. Система имитационного моделирования бокового движения.

    реферат [1,2 M], добавлен 22.02.2012

  • Виды производительности транспортных машин. Общее сопротивление движению самоходной машины. Силы тяги, сопротивления и натяжения при движении замкнутого гибкого тягового органа. Мощность двигателя привода. Сила тяги и сопротивления при перемещении грузов.

    контрольная работа [1,3 M], добавлен 25.07.2013

  • Сравнение технико-эксплуатационных характеристик используемых коммивояжером видов транспорта. Расчет и сравнение времени следования коммивояжера при использовании железнодорожного и автомобильного транспорта. Расчет материальных затрат коммивояжера.

    курсовая работа [60,9 K], добавлен 23.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.