Модель одномерного "потенциального ящика", случаи количественной Эффективности. Энергетическая диаграмма, свойство ортогональности волновых функций. Плоский ротатор. Гамильтониан одномерного гармонического осциллятора, молекулярные колебания. Лапласиан.
Уравнения Больцмана, которое описывает статистическое распределение частиц в газе или жидкости. Принципиальные свойства уравнения Лиувилля. Безразмерная форма уравнений Боголюбова. Факторизация и корреляционные функции. Свободно-молекулярное течение.
Разложение многочлена на множители. Область допустимых значений уравнения как множество всех действительных чисел. Утверждения, полезные при решении уравнений. Примеры упражнений, связанных с понятием обратной функции, нестандартные методы решения.
Практические формы уравнений движения. Определение коэффициента инерции вращающихся частей поезда. Связь между скоростью движения, временем и пройденным поездом расстоянием. Угловые скорости вращающихся частей. Изменение кинетической энергии тела.
Практические формы уравнений движения. Коэффициент инерции вращающихся частей поезда. Упрощенная кинематическая схема передачи вращающего момента с вала на обод движущего колеса. Кинетическая энергия, физхическая масса и скорость поступательного движения.
Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.
Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
Возрастные, физиологические и психологические особенности школьников 7-9 кл., организация учебной деятельности. Роль и место параметрических уравнений и неравенств в формировании исследовательских умений учащихся, разработка элективного курса по алгебре.
Уравнения, структура и параметры реального электромагнитного поля, состоящего из функционально связанных между собой четырех полевых векторных компонент: электрической и магнитной напряженностей, электрического и магнитного векторного потенциала.
Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.
Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.
Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.
- 6134. Уравнения Максвелла
Вихревое электрическое поле. Интегральная форма уравнений Максвелла. Единая теория электрических и магнитных явлений. Понятие о токе смещения. Постулат Максвелла, выражающий закон создания электрических полей действием зарядов в произвольных средах.
- 6135. Уравнения Максвелла
Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.
Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.
- 6137. Уравнения равновесия
Аналитическое исследование сетей массового обслуживания с помощью стационарного (инвариантного) распределения вероятностей состояний, его зависимость от вида функций распределения времени обслуживания. Постановка задачи, составление уравнения уравновесия.
- 6138. Уравнения регрессии
Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
- 6139. Уравнения регрессии
Основные параметры уравнения регрессии, оценка их параметров и значимость. Интервальная оценка для коэффициента корреляции. Анализ точности определения оценок коэффициентов регрессии. Показатели качества уравнения регрессии, прогнозирование данных.
Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.
Уравнение как равенство, содержащее неизвестное число. Примеры уравнений с одной переменной. Условия обращения уравнения в истинное числовое равенство – его решение (корень). Множество решений уравнения. Уравнение без решения (множество решений пусто).
Понятие волнового уравнения, описывающего различные виды колебаний. Рассмотрение явной разностной схемы "крест" для решения данной задачи. Нахождение решений на нулевом и первом слоях с помощью начальных условий. Виды и решения интегральных уравнений.
Пространство обобщенных функций. Дифференциальные уравнения в обобщенных функциях. Преобразования Лапласа и Фурье. Обобщенные функции, отвечающие квадратичным формам с комплексными коэффициентами. Нахождение решения в математическом пакете Maple.
Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.
Взаимосвязь термодинамических (макроскопических) параметров системы, их применение для оценки свойств чистых веществ и их смесей. Характеристика и вид уравнений состояния жидкостей и твердых тел, их теоретическая и практическая ценность, суть равновесия.
Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.
Системы уравнений. Запись в виде системы. Линейное уравнение с двумя переменными. Квадратные уравнения второй степени. Упрощенное уравнение третей степени. Переменная в четвертой степени. Множество корней (решений). Способ подстановки. Способ сложения.
Освоение методики математической обработки результатов геодезических измерений в сетях сгущения. Вычисление координат дополнительных пунктов, определенных прямой и обратной многократными угловыми засечками. Уравнивание системы ходов полигонометрии.
Схема одиночного нивелирного хода. Вычисление невязки по ходу для нивелирования III класса и сравнение ее с предельно допустимой. Распределение невязки пропорционально длинам секций. Высота промежуточных реперов и оценка точности полевых измерений.
Составление системы углов уравнения связи, матрицы коэффициентов условных уравнений поправок. Расчет вектора свободных членов, приближенных и измеренных значений параметров. Оценка точности. Принятие истинных значений отметок определенных реперов.